scholarly journals Coupled Ion Movement Underlies Rectification in an Inward-Rectifier K+ Channel

1998 ◽  
Vol 112 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Maria Spassova ◽  
Zhe Lu

We studied block of the internal pore of the ROMK1 inward-rectifier K+ channel by Mg2+ and five quaternary ammoniums (tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, and tetrapentylammonium). The apparent affinity of these blockers varied as a function of membrane voltage. As a consequence, the channel conducted K+ current more efficiently in the inward than the outward direction; i.e., inward rectification. Although the size of some monovalent quaternary ammoniums is rather large, the zδ values (which measure voltage dependence of their binding to the pore) were near unity in symmetric 100 mM K+. Furthermore, we observed that not only the apparent affinities of the blockers themselves, but also their dependence on membrane voltage (or zδ), varied as a function of the concentration of extracellular K+. These results suggest that there is energetic coupling between the binding of blocking and permeating (K+) ions, and that the voltage dependence of channel blockade results, at least in part, from the movement of K+ ions in the electrical field. A further quantitative analysis of the results explains why the complex phenomenon of inward rectification depends on both membrane voltage and the equilibrium potential for K+.

1995 ◽  
Vol 6 (9) ◽  
pp. 1231-1240 ◽  
Author(s):  
W Tang ◽  
A Ruknudin ◽  
W P Yang ◽  
S Y Shaw ◽  
A Knickerbocker ◽  
...  

We describe the expression of gpIRK1, an inwardly rectifying K+ channel obtained from guinea pig cardiac cDNA. gpIRK1 is a homologue of the mouse IRK1 channel identified in macrophage cells. Expression of gpIRK1 in Xenopus oocytes produces inwardly rectifying K+ current, similar to the cardiac inward rectifier current IK1. This current is blocked by external Ba2+ and Cs+. Plasmids containing the gpIRK1 coding region under the transcriptional control of constitutive (PGK) or inducible (GAL) promoters were constructed for expression in Saccharomyces cerevisiae. Several observations suggest that gpIRK1 forms functional ion channels when expressed in yeast. gpIRK1 complements a trk1 delta trk2 delta strain, which is defective in potassium uptake. Expression of gpIRK1 in this mutant restores growth on low potassium media. Growth dependent on gpIRK1 is inhibited by external Cs+. The strain expressing gpIRK1 provides a versatile genetic system for studying the assembly and composition of inwardly rectifying K+ channels.


1995 ◽  
Vol 74 (2) ◽  
pp. 506-518 ◽  
Author(s):  
L. D. Matzel ◽  
I. A. Muzzio ◽  
R. F. Rogers

1. gamma-Aminobuturic acid-B (GABAB) receptors play a role in the mediation of slow inhibitory postsynaptic potentials in mammalian as well as some nonmammalian species. In identified photoreceptors from the marine mollusc Hermissenda, recent evidence has suggested that GABA, as well as the GABAB receptor agonist baclofen, might simultaneously modulate multiple conductances on the postsynaptic membrane. Here, using intracellular current-clamp and single-electrode voltage-clamp techniques, we have characterized responses to baclofen in the B photoreceptors of the Hermissenda eye. 2. Microapplication of baclofen (12.5–62.5 microM) to the terminal branches of the B photoreceptors induced a slow, concentration-dependent hyperpolarization (approximately 3–8 mV) that was accompanied by a cessation of spontaneous action potentials and a positive shift in firing threshold. Both the hyperpolarization and the shift in spike threshold in response to baclofen were attenuated largely by the K+ channel blocker tetraethylammonium chloride (TEA; 50 mM). 3. Bath application of baclofen (100 microM) decreased the amplitude, duration, and the afterhyperpolarization (AHP) of evoked action potentials. Although baclofen's effect on spike duration and amplitude persisted in the absence of extracellular Ca2+, the reduction of the AHP by baclofen was eliminated, suggesting that multiple conductances mediated the baclofen-induced modification of the action potential. 4. Using a single-electrode voltage-clamp technique, microapplication of baclofen to the terminal branches of the B photoreceptor produced a slow, net outward current (< 0.5 nA) that reversed near the equilibrium potential for K+ and shifted to more positive potentials when extracellular K+ was increased, in approximate agreement with the Nernst equation for K+. 5. Baclofen induced an increase in amplitude of the nonvoltage dependent leak conductance (IL), and the increase was blocked by TEA. The baclofen-induced increase of IL was accompanied by an increase in amplitude and a negative shift in the voltage dependence of a slow, steeply voltage-dependent K+ current (IK), which displays selective sensitivity to TEA but does not normally contribute to leak conductance. The amplitude and steady-state inactivation of a fast, transient K+ current, as well as the amplitude of an inwardly rectifying K+ current were unaffected by baclofen. 6. Both the rate of activation as well as the amplitude of a voltage-dependent Ca2+ current (ICa) were reduced by baclofen. The reduction of ICa resulted in a concomitant suppression of a Ca(2+)-dependent K+ current (IK-Ca) that was sufficient to account for the reduction of the AHP after evoked action potentials.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 99 (4) ◽  
pp. 615-644 ◽  
Author(s):  
M R Blatt

Intracellular microelectrode recordings and a two-electrode voltage clamp have been used to characterize the current carried by inward rectifying K+ channels of stomatal guard cells from the broadbean, Vicia faba L. Superficially, the current displayed many features common to inward rectifiers of neuromuscular and egg cell membranes. In millimolar external K+ concentrations (Ko+), it activated on hyperpolarization with half-times of 100-200 ms, showed no evidence of time- or voltage-dependent inactivation, and deactivated rapidly (tau approximately 10 ms) on clamping to 0 mV. Steady-state conductance-voltage characteristics indicated an apparent gating charge of 1.3-1.6. Current reversal showed a Nernstian dependence on Ko+ over the range 3-30 mM, and the inward rectifier was found to be highly selective for K+ over other monovalent cations (K+ greater than Rb+ greater than Cs+ much greater than Na+). Unlike the inward rectifiers of animal membranes, the current was blocked by charybdotoxin and alpha-dendrotoxin (Kd much less than 50 nM), as well as by tetraethylammonium chloride (K1/2 = 9.1 mM); gating of the guard cell K+ current was fixed to voltages near -120 mV, independent of Ko+, and the current activated only with supramillimolar K+ outside (EK+ greater than -120 mV). Most striking, however, was inward rectifier sensitivity to [H+] with the K+ current activated reversibly by mild acid external pH. Current through the K+ inward rectifier was found to be largely independent of intracellular pH and the current reversal (equilibrium) potential was unaffected by pHo from 7.4 to 5.5. By contrast, current through the K+ outward rectifier previously characterized in these cells (1988. J. Membr. Biol. 102:235) was largely insensitive to pHo, but was blocked reversibly by acid-going intracellular pH. The action of pHo on the K+ inward rectifier could not be mimicked by extracellular Ca2+ for which changes in activation, deactivation, and conductance were consonant with an effect on surface charge ([Ca2+] less than or equal to 1 mM). Rather, extracellular pH affected activation and deactivation kinetics disproportionately, with acid-going pHo raising the K+ conductance and shifting the conductance-voltage profile positive-going along the voltage axis and into the physiological voltage range. Voltage and pH dependencies for gating were consistent with a single, titratable group (pKa approximately 7 at -200 mV) residing deep within the membrane electric field and accessible from the outside.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 65 (3) ◽  
pp. 348-351 ◽  
Author(s):  
F. Moody-Corbett ◽  
P. Brehm

Cultures prepared from dissociated rat thymus were examined 1–2 weeks after plating. Macrophage cells were identified by their adherence, morphological appearance, and ability to phagocytize carbon particles or heat-inactivated Staphylococcus aureus. Whole cell current recordings from macrophage cells revealed an inward current at potentials more negative than the equilibrium potential for potassium and an outward current at potentials more positive than −40 mV in normal recording solution. Acetylcholine or muscarine caused a reduction in inward current but did not alter the outward current. The inward current and acetylcholine effect were seen at less negative potentials by decreasing the potassium equilibrium potential and both were blocked by the addition of cesium to the external recording solution. These results indicated that the inward current was mediated by potassium through the inward or anomalous rectifier. Physiologically, the action of acetylcholine on the inward rectifier of these macrophage cells may be mediated by cholinergic innervation of the thymus.


2005 ◽  
Vol 125 (4) ◽  
pp. 413-426 ◽  
Author(s):  
Hyeon-Gyu Shin ◽  
Zhe Lu

IRK1 (Kir2.1) inward-rectifier K+ channels exhibit exceedingly steep rectification, which reflects strong voltage dependence of channel block by intracellular cations such as the polyamine spermine. On the basis of studies of IRK1 block by various amine blockers, it was proposed that the observed voltage dependence (valence ∼5) of IRK1 block by spermine results primarily from K+ ions, not spermine itself, traversing the transmembrane electrical field that drops mostly across the narrow ion selectivity filter, as spermine and K+ ions displace one another during channel block and unblock. If indeed spermine itself only rarely penetrates deep into the ion selectivity filter, then a long blocker with head groups much wider than the selectivity filter should exhibit comparably strong voltage dependence. We confirm here that channel block by two molecules of comparable length, decane-bis-trimethylammonium (bis-QAC10) and spermine, exhibit practically identical overall voltage dependence even though the head groups of the former are much wider (∼6 Å) than the ion selectivity filter (∼3 Å). For both blockers, the overall equilibrium dissociation constant differs from the ratio of apparent rate constants of channel unblock and block. Also, although steady-state IRK1 block by both cations is strongly voltage dependent, their apparent channel-blocking rate constant exhibits minimal voltage dependence, which suggests that the pore becomes blocked as soon as the blocker encounters the innermost K+ ion. These findings strongly suggest the existence of at least two (potentially identifiable) sequentially related blocked states with increasing numbers of K+ ions displaced. Consequently, the steady-state voltage dependence of IRK1 block by spermine or bis-QAC10 should increase with membrane depolarization, a prediction indeed observed. Further kinetic analysis identifies two blocked states, and shows that most of the observed steady-state voltage dependence is associated with the transition between blocked states, consistent with the view that the mutual displacement of blocker and K+ ions must occur mainly as the blocker travels along the long inner pore.


2005 ◽  
Vol 126 (2) ◽  
pp. 123-135 ◽  
Author(s):  
Hyeon-Gyu Shin ◽  
Yanping Xu ◽  
Zhe Lu

Steep rectification in IRK1 (Kir2.1) inward-rectifier K+ channels reflects strong voltage dependence (valence of ∼5) of channel block by intracellular cationic blockers such as the polyamine spermine. The observed voltage dependence primarily results from displacement, by spermine, of up to five K+ ions across the narrow K+ selectivity filter, along which the transmembrane voltage drops steeply. Spermine first binds, with modest voltage dependence, at a shallow site where it encounters the innermost K+ ion and impedes conduction. From there, spermine can proceed to a deeper site, displacing several more K+ ions and thereby producing most of the observed voltage dependence. Since in the deeper blocked state the leading amine group of spermine reaches into the cavity region (internal to the selectivity filter) and interacts with residue D172, its trailing end is expected to be near M183. Here, we found that mutation M183A indeed affected the deeper blocked state, which supports the idea that spermine is located in the region lined by the M2 and not deep in the narrow K+ selectivity filter. As to the shallower site whose location has been unknown, we note that in the crystal structure of homologous GIRK1 (Kir3.1), four aromatic side chains of F255, one from each of the four subunits, constrict the intracellular end of the pore to ∼10 Å. For technical simplicity, we used tetraethylammonium (TEA) as an initial probe to test whether the corresponding residue in IRK1, F254, forms the shallower site. We found that replacing the aromatic side chain with an aliphatic one not only lowered TEA affinity of the shallower site ∼100-fold but also eliminated the associated voltage dependence and, furthermore, confirmed that similar effects occurred also for spermine. These results establish the evidence for physically separate, sequential ion-binding loci along the long inner pore of IRK1, and strongly suggest that the aromatic side chains of F254 underlie the likely innermost binding locus for both blocker and K+ ions in the cytoplasmic pore.


2020 ◽  
Vol 6 (10) ◽  
pp. eaaz3439
Author(s):  
Ruiming Zhao ◽  
Hui Dai ◽  
Netanel Mendelman ◽  
Jordan H. Chill ◽  
Steve A. N. Goldstein

We show here that membrane-tethered toxins facilitate the biophysical study of the roles of toxin residues in K+ channel blockade to reveal two blocking mechanisms in the K+ channel pore. The structure of the sea anemone type I (SAK1) toxin HmK is determined by NMR. T-HmK residues are scanned by point mutation to map the toxin surface, and seven residues are identified to be critical to occlusion of the KcsA channel pore. T-HmK–Lys22 is shown to interact with K+ ions traversing the KcsA pore from the cytoplasm conferring voltage dependence on the toxin off rate, a classic mechanism that we observe as well with HmK in solution and for Kv1.3 channels. In contrast, two related SAK1 toxins, Hui1 and ShK, block KcsA and Kv1.3, respectively, via an arginine rather than the canonical lysine, when tethered and as free peptides.


1994 ◽  
Vol 267 (1) ◽  
pp. C255-C265 ◽  
Author(s):  
S. C. Martin ◽  
J. Thompson ◽  
T. J. Shuttleworth

In the avian salt gland carbachol (CCh) evokes oscillations in K+ and Cl- current that are sufficient to fully activate secretory activity. Employing the perforated patch-clamp technique, we demonstrate that beta-adrenergic receptor activation stimulates a sustained adenosine 3',5'-cyclic monophosphate (cAMP)-dependent Cl- current with no increase in K+ current. This evokes only a modest increase in secretory activity. However, application of isoproterenol in the presence of a threshold dose of CCh results in maximal secretory activity. Membrane potential measurements demonstrate that isoproterenol stimulates a sustained membrane depolarization from approximately -45 mV to the Cl- equilibrium potential (ECl), whereas CCh evokes oscillations in membrane potential to levels more negative than ECl, representing a mixture of K+ and Cl- conductances. We conclude that, in agreement with current models of fluid secretion, maximal stimulation can only be achieved with simultaneous activation of both K+ and Cl- currents. Because isoproterenol fails to stimulate a K+ current, Cl- secretion is reduced as the driving force for Cl- secretion is dissipated. However, if a driving force is imposed by increasing K+ channel activity (by coadministering CCh), Cl- efflux is sustained. These results could provide a basis for the marked potentiation of Ca(2+)-mediated secretion by agonists that increase cAMP seen in in vivo studies of salivary glands and other exocrine tissues.


Sign in / Sign up

Export Citation Format

Share Document