anomalous rectifier
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

2004 ◽  
Vol 91 (5) ◽  
pp. 2297-2311 ◽  
Author(s):  
Xintian Yu ◽  
John H. Byrne ◽  
Douglas A. Baxter

The biophysical properties of neuron R15 in Aplysia endow it with the ability to express multiple modes of oscillatory electrical activity, such as beating and bursting. Previous modeling studies examined the ways in which membrane conductances contribute to the electrical activity of R15 and the ways in which extrinsic modulatory inputs alter the membrane conductances by biochemical cascades and influence the electrical activity. The goals of the present study were to examine the ways in which electrical activity influences the biochemical cascades and what dynamical properties emerge from the ongoing interactions between electrical activity and these cascades. The model proposed by Butera et al. in 1995 was extended to include equations for the binding of Ca2+ to calmodulin (CaM) and the actions of Ca2+/CaM on both adenylyl cyclase and phosphodiesterase. Simulations indicated that levels of cAMP oscillated during bursting and that these oscillations were approximately antiphasic to the oscillations of Ca2+. In the presence of cAMP oscillations, brief perturbations could switch the electrical activity between bursting and beating (bistability). Compared with a constant-cAMP model, oscillations of cAMP substantially expanded the range of bistability. Moreover, the integrated electrical/biochemical model simulated some early experimental results such as activity-dependent inactivation of the anomalous rectifier. The results of the present study suggest that the endogenous activity of R15 depends, in part, on interactions between electrical activity and biochemical cascades.


1990 ◽  
Vol 95 (1) ◽  
pp. 177-198 ◽  
Author(s):  
R P Malchow ◽  
H H Qian ◽  
H Ripps ◽  
J E Dowling

Two morphologically distinct types of horizontal cell have been identified in the all-rod skate retina by light- and electron-microscopy as well as after isolation by enzymatic dissociation. The external horizontal cell is more distally positioned in the retina and has a much larger cell body than does the internal horizontal cell. However, both external and internal horizontal cells extend processes to the photoreceptor terminals where they end as lateral elements adjacent to the synaptic ribbons within the terminal invaginations. Whole-cell voltage-clamp studies on isolated cells similar in appearance to those seen in situ showed that both types displayed five separate voltage-sensitive conductances: a TTX-sensitive sodium conductance, a calcium current, and three potassium-mediated conductances (an anomalous rectifier, a transient outward current resembling an A current, and a delayed rectifier). There was, however, a striking difference between external and internal horizontal cells in the magnitude of the current carried by the anomalous rectifier. Even after compensating for differences in the surface areas of the two cell types, the sustained inward current elicited by hyperpolarizing voltage steps was a significantly greater component of the current profile of external horizontal cells. A difference between external and internal horizontal cells was seen also in the magnitudes of their TEA-sensitive currents; larger currents were usually obtained in recordings from internal horizontal cells. However, the currents through these K+ channels were quite small, the TEA block was often judged to be incomplete, and except for depolarizing potentials greater than or equal to +20 mV (i.e., outside the normal operating range of horizontal cells), this current did not provide a reliable indicator of cell type. The fact that two classes of horizontal cell can be distinguished by their electrophysiological responses, as well as by their morphological appearance and spatial distribution in the retina, suggests that they may play different roles in the processing of visual information within the retina.


1988 ◽  
Vol 59 (2) ◽  
pp. 468-481 ◽  
Author(s):  
P. C. Schwindt ◽  
W. J. Spain ◽  
W. E. Crill

1. Large neurons from layer V of cat sensorimotor cortex (Betz cells) were studied to determine the influence of the anomalous rectifier current (IAR) on slow afterhyperpolarizations (AHPs). The neurons were examined using intracellular recording and single-microelectrode voltage clamp in an in vitro brain slice preparation. 2. A faster medium-duration AHP (mAHP) and slower AHP (sAHP) followed repetitive firing (22, 23). The amplitude of the mAHP often increased or remained constant during membrane potential hyperpolarization. The membrane potential trajectory resulting solely from IAR activation was similar to the mAHP. 3. Postrepetitive firing voltage clamp was used to measure directly slowly decaying K+ currents (IK) and IAR at different membrane potentials. IK exhibited both a fast and slow decay. The time constants of the fast decay of IK and IAR activation were similar. IAR increased with hyperpolarization or raised extracellular K+ concentration [( K+]o), whereas both the fast and slow components of IK reversed or nulled near -100 mV and behaved as pure K+ currents in response to raised [K+]o. 4. To determine the precise contribution of IK and IAR to the AHP waveform, theoretical AHPs were computed using a quantitative model based on voltage-clamp measurements. The calculated AHPs were qualitatively similar to measured AHPs. The amplitude of the mAHP showed little change with hyperpolarization because of the increasing dominance of IAR at more negative membrane potentials. The sAHP was little affected by IAR activation. 5. Several model parameters subject to biological variation among Betz cells were varied in the calculations to determine their importance in the AHP waveform. With IK parameters held constant, the amplitude and time course of the mAHP depended on resting potential, membrane time constant, the kinetics of the anomalous rectifier conductance (GAR), and the maximum value of GAR. IAR activation could result in a biphasic AHP even when the fast decay of IK was omitted from the calculations. 6. A wider variation of model parameters revealed behavior that may be relevant to other neurons. Certain values of membrane or IAR activation time constants resulted in a monophasic AHP even when the fast decay of IK was present. The decay of a biphasic AHP could reflect either the onset of IAR or the fast decay of IK, depending on the relative value of their time constants. Procedures are outlined to discriminate between these possibilities using current clamp methods.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 65 (3) ◽  
pp. 348-351 ◽  
Author(s):  
F. Moody-Corbett ◽  
P. Brehm

Cultures prepared from dissociated rat thymus were examined 1–2 weeks after plating. Macrophage cells were identified by their adherence, morphological appearance, and ability to phagocytize carbon particles or heat-inactivated Staphylococcus aureus. Whole cell current recordings from macrophage cells revealed an inward current at potentials more negative than the equilibrium potential for potassium and an outward current at potentials more positive than −40 mV in normal recording solution. Acetylcholine or muscarine caused a reduction in inward current but did not alter the outward current. The inward current and acetylcholine effect were seen at less negative potentials by decreasing the potassium equilibrium potential and both were blocked by the addition of cesium to the external recording solution. These results indicated that the inward current was mediated by potassium through the inward or anomalous rectifier. Physiologically, the action of acetylcholine on the inward rectifier of these macrophage cells may be mediated by cholinergic innervation of the thymus.


1986 ◽  
Vol 55 (3) ◽  
pp. 499-513 ◽  
Author(s):  
E. M. Lasater

Horizontal cells from the retinas of white perch were isolated and maintained in cell culture for 3 days to 3 wk. Four morphologically distinct types of horizontal cells could be identified in culture and were labeled types H1, H2, H3, and H4. Whole-cell patch-clamp techniques were used to study the ionic currents present in the four cell types. In all cells, depolarizing commands above threshold elicited a fast-inward current followed by an outward current. The fast-inward current was abolished by tetrodotoxin (TTX) or 0 Na+ Ringer's, indicating the current was carried by Na+. In H1, H2, and H3 cells, the outward current, carried by K+, consisted of two components: a transient current (IA), blockable with 4-aminopyridine (4-AP), tetraethylammonium (TEA), or intracellular cesium and a sustained current that could be blocked with TEA. The H4 cell had only the sustained current. An inward rectifying K+ current (anomalous rectifier) was observed in the four cell types. The current was sensitive to the extracellular K+ concentration. Its activation showed two components: an instantaneous component and a slower component. The slow component becomes faster with greater hyperpolarizations. The four cell types possessed a small, sustained Ca2+ current that, under normal conditions, was masked by the inward Na+ current and outward K+ currents.


1983 ◽  
Vol 81 (4) ◽  
pp. 513-530 ◽  
Author(s):  
K G Beam ◽  
P L Donaldson

The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.


Sign in / Sign up

Export Citation Format

Share Document