scholarly journals Intracellular Mg2+ Enhances the Function of Bk-Type Ca2+-Activated K+ Channels

2001 ◽  
Vol 118 (5) ◽  
pp. 589-606 ◽  
Author(s):  
Jingyi Shi ◽  
Jianmin Cui

BK channels modulate neurotransmitter release due to their activation by voltage and Ca2+. Intracellular Mg2+ also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg2+ blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg2+ activates mslo1 BK channels independently of Ca2+ and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca2+ binding sites in the tail, is not activated by Mg2+. However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg2+ sensitivity similar to mslo1 channels, indicating that Mg2+ sites differ from Ca2+ sites. We discovered that Mg2+ also binds to Ca2+ sites and competitively inhibits Ca2+-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg2+ under physiological conditions is to enhance BK channel function.

2019 ◽  
Vol 116 (37) ◽  
pp. 18397-18403 ◽  
Author(s):  
Christopher J. Lingle ◽  
Pedro L. Martinez-Espinosa ◽  
Aizhen Yang-Hood ◽  
Luis E. Boero ◽  
Shelby Payne ◽  
...  

The perception of sound relies on sensory hair cells in the cochlea that convert the mechanical energy of sound into release of glutamate onto postsynaptic auditory nerve fibers. The hair cell receptor potential regulates the strength of synaptic transmission and is shaped by a variety of voltage-dependent conductances. Among these conductances, the Ca2+- and voltage-activated large conductance Ca2+-activated K+channel (BK) current is prominent, and in mammalian inner hair cells (IHCs) displays unusual properties. First, BK currents activate at unprecedentedly negative membrane potentials (−60 mV) even in the absence of intracellular Ca2+elevations. Second, BK channels are positioned in clusters away from the voltage-dependent Ca2+channels that mediate glutamate release from IHCs. Here, we test the contributions of two recently identified leucine-rich-repeat–containing (LRRC) regulatory γ subunits, LRRC26 and LRRC52, to BK channel function and localization in mouse IHCs. Whereas BK currents and channel localization were unaltered in IHCs fromLrrc26knockout (KO) mice, BK current activation was shifted more than +200 mV in IHCs fromLrrc52KO mice. Furthermore, the absence of LRRC52 disrupted BK channel localization in the IHCs. Given that heterologous coexpression of LRRC52 with BK α subunits shifts BK current gating about −90 mV, to account for the profound change in BK activation range caused by removal of LRRC52, we suggest that additional factors may help define the IHC BK gating range. LRRC52, through stabilization of a macromolecular complex, may help retain some other components essential both for activation of BK currents at negative membrane potentials and for appropriate BK channel positioning.


2002 ◽  
Vol 120 (3) ◽  
pp. 369-393 ◽  
Author(s):  
Richard J. Prince ◽  
Richard A. Pennington ◽  
Steven M. Sine

We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.


2010 ◽  
Vol 135 (5) ◽  
pp. 461-480 ◽  
Author(s):  
Christopher Shelley ◽  
Xiaowei Niu ◽  
Yanyan Geng ◽  
Karl L. Magleby

Voltage-dependent gating mechanisms of large conductance Ca2+ and voltage-activated (BK) channels were investigated using two-dimensional maximum likelihood analysis of single-channel open and closed intervals. To obtain sufficient data at negative as well as positive voltages, single-channel currents were recorded at saturating Ca2+ from BK channels mutated to remove the RCK1 Ca2+ and Mg2+ sensors. The saturating Ca2+ acting on the Ca2+ bowl sensors of the resulting BKB channels increased channel activity while driving the gating into a reduced number of states, simplifying the model. Five highly constrained idealized gating mechanisms based on extensions of the Monod-Wyman-Changeux model for allosteric proteins were examined. A 10-state model without coupling between the voltage sensors and the opening/closing transitions partially described the voltage dependence of Po but not the single-channel kinetics. With allowed coupling, the model gave improved descriptions of Po and approximated the single-channel kinetics; each activated voltage sensor increased the opening rate approximately an additional 23-fold while having little effect on the closing rate. Allowing cooperativity among voltage sensors further improved the description of the data: each activated voltage sensor increased the activation rate of the remaining voltage sensors approximately fourfold, with little effect on the deactivation rate. The coupling factor was decreased in models with cooperativity from ∼23 to ∼18. Whether the apparent cooperativity among voltage sensors arises from imposing highly idealized models or from actual cooperativity will require additional studies to resolve. For both cooperative and noncooperative models, allowing transitions to five additional brief (flicker) closed states further improved the description of the data. These observations show that the voltage-dependent single-channel kinetics of BKB channels can be approximated by highly idealized allosteric models in which voltage sensor movement increases Po mainly through an increase in channel opening rates, with limited effects on closing rates.


2000 ◽  
Vol 116 (1) ◽  
pp. 75-100 ◽  
Author(s):  
Brad S. Rothberg ◽  
Karl L. Magleby

The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, qeff, of 2.3 ± 0.6 eo). Estimates of qeff were little changed for intracellular Ca2+ (Ca2+i) ranging from 0.0003 to 1,024 μM. Increasing Ca2+i from 0.03 to 1,024 μM shifted the voltage for half maximal activation (V1/2) 175 mV in the hyperpolarizing direction. V1/2 was independent of Ca2+i for Ca2+i ≤ 0.03 μM, indicating that the channel can be activated in the absence of Ca2+i. Open and closed dwell-time distributions for data obtained at different Ca2+i and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (qeff = −0.5 eo) and an increase in the mean opening rate (qeff = 1.8 eo), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+i (∼0 through 1,024 μM), voltage (+80 to −80 mV), and Po (10−4 to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.


2006 ◽  
Vol 291 (4) ◽  
pp. C750-C756 ◽  
Author(s):  
Brian M. Hagen ◽  
Kenton M. Sanders

Large-conductance Ca2+-activated potassium (BK) channels are composed of pore-forming α-subunits and auxiliary β-subunits. The α-subunits are widely expressed in many cell types, whereas the β-subunits are more tissue specific and influence diverse aspects of channel function. In the current study, we identified the presence of the smooth muscle-specific β1-subunit in murine colonic tissue using Western blotting. The native β1-subunits migrated in SDS-PAGE as two molecular mass bands. Enzymatic removal of N-linked glycosylations from the β1-subunit resulted in a single band that migrated at a lower molecular mass than the native β1-subunit bands, suggesting that the native β1-subunit exists in either a core glycosylated or highly glycosylated form. We investigated the functional consequence of deglycosylating the β1-subunit during inside-out single-channel recordings. During inside-out single-channel recordings, with N-glycosidase F in the pipette solution, the open probability ( Po) and mean open time of BK channels increased in a time-dependent manner. Deglycosylation of BK channels did not affect the conductance but shifted the steady-state voltage of activation toward more positive potentials without affecting slope when Ca2+ concentration was <1 μM. Treatment of myocytes lacking the β1-subunits of the BK channel with N-glycosidase F had no effect. These data suggest that glycosylations on the β1-subunit in smooth muscle cells can modify the biophysical properties of BK channels.


2001 ◽  
Vol 117 (6) ◽  
pp. 607-628 ◽  
Author(s):  
Xu-Hui Zeng ◽  
J.-P. Ding ◽  
Xiao-Ming Xia ◽  
Christopher J. Lingle

Both β1 and β2 auxiliary subunits of the BK-type K+ channel family profoundly regulate the apparent Ca2+ sensitivity of BK-type Ca2+-activated K+ channels. Each produces a pronounced leftward shift in the voltage of half-activation (V0.5) at a given Ca2+ concentration, particularly at Ca2+ above 1 μM. In contrast, the rapidly inactivating β3b auxiliary produces a leftward shift in activation at Ca2+ below 1 μM. In the companion work (Lingle, C.J., X.-H. Zeng, J.-P. Ding, and X.-M. Xia. 2001. J. Gen. Physiol. 117:583–605, this issue), we have shown that some of the apparent β3b-mediated shift in activation at low Ca2+ arises from rapid unblocking of inactivated channels, unlike the actions of the β1 and β2 subunits. Here, we compare effects of the β3b subunit that arise from inactivation, per se, versus those that may arise from other functional effects of the subunit. In particular, we examine gating properties of the β3b subunit and compare it to β3b constructs lacking either the NH2- or COOH terminus or both. The results demonstrate that, although the NH2 terminus appears to be the primary determinant of the β3b-mediated shift in V0.5 at low Ca2+, removal of the NH2 terminus reveals two other interesting aspects of the action of the β3b subunit. First, the conductance-voltage curves for activation of channels containing the β3b subunit are best described by a double Boltzmann shape, which is proposed to arise from two independent voltage-dependent activation steps. Second, the presence of the β3b subunit results in channels that exhibit an anomalous instantaneous outward current rectification that is correlated with a voltage dependence in the time-averaged single-channel current. The two effects appear to be unrelated, but indicative of the variety of ways that interactions between β and α subunits can affect BK channel function. The COOH terminus of the β3b subunit produces no discernible functional effects.


2016 ◽  
Vol 148 (5) ◽  
pp. 419-440 ◽  
Author(s):  
Guruprasad Kuntamallappanavar ◽  
Alex M. Dopico

In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (β1–β4) subunits. When Ca2+i (3–20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca2+i concentrations—all determinants of the BK response to ethanol—made it impossible to determine the specific contribution of β subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by βs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel (“cbv1” from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different β subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+β3-, and cbv1+β4-mediated currents at low Ca2+i while inhibiting current at high Ca2+i, the potentiation–inhibition crossover occurring at 20 µM Ca2+i; (2) for cbv1+β1, cbv1+wt β2, and cbv1+β2-IR, this crossover was shifted to ∼3 µM Ca2+i. Second, applying Horrigan–Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel’s apparent Ca2+ affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca2+ binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+β1, ethanol (a) also decreases Kd, yet this decrease (two times) is much smaller than that of cbv1; (b) reduces C; and (c) decreases coupling between Ca2+ binding and voltage sensing (parameter E). Decreased allosteric coupling leads to diminished BK activity. Thus, we have identified critical gating modifications that lead to the differential actions of ethanol on slo1 with and without different β subunits.


2019 ◽  
Author(s):  
Yenisleidy Lorenzo-Ceballos ◽  
Willy Carrasquel-Ursulaez ◽  
Karen Castillo ◽  
Osvaldo Alvarez ◽  
Ramon Latorre

AbstractAllosteric interplays between voltage-sensing domains (VSD), Ca2+-binding sites, and the pore domain govern the Ca2+- and voltage-activated K+ (BK) channel opening. However, the functional relevance of the Ca2+- and voltage-sensing mechanisms crosstalk on BK channel gating is still debated. We examined the energetic interaction between Ca2+ binding and VSD activation measuring and analyzing the effects of internal Ca2+ on BK channels gating currents. Our results indicate that the Ca2+ sensors occupancy has a strong impact on the VSD activation through a coordinated interaction mechanism in which Ca2+ binding to a single α-subunit affects all VSDs equally. Moreover, the two distinct high-affinity Ca2+-binding sites contained in the C-terminus domains, RCK1 and RCK2, appear to contribute equally to decrease the free energy necessary to activate the VSD. We conclude that voltage-dependent gating and pore opening in BK channels is modulated to a great extent by the interaction between Ca2+ sensors and VSDs.


2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


2018 ◽  
Vol 115 (40) ◽  
pp. 9923-9928 ◽  
Author(s):  
Vivian Gonzalez-Perez ◽  
Manu Ben Johny ◽  
Xiao-Ming Xia ◽  
Christopher J. Lingle

Structural symmetry is a hallmark of homomeric ion channels. Nonobligatory regulatory proteins can also critically define the precise functional role of such channels. For instance, the pore-forming subunit of the large conductance voltage and calcium-activated potassium (BK, Slo1, or KCa1.1) channels encoded by a single KCa1.1 gene assembles in a fourfold symmetric fashion. Functional diversity arises from two families of regulatory subunits, β and γ, which help define the range of voltages over which BK channels in a given cell are activated, thereby defining physiological roles. A BK channel can contain zero to four β subunits per channel, with each β subunit incrementally influencing channel gating behavior, consistent with symmetry expectations. In contrast, a γ1 subunit (or single type of γ1 subunit complex) produces a functionally all-or-none effect, but the underlying stoichiometry of γ1 assembly and function remains unknown. Here we utilize two distinct and independent methods, a Forster resonance energy transfer-based optical approach and a functional reporter in single-channel recordings, to reveal that a BK channel can contain up to four γ1 subunits, but a single γ1 subunit suffices to induce the full gating shift. This requires that the asymmetric association of a single regulatory protein can act in a highly concerted fashion to allosterically influence conformational equilibria in an otherwise symmetric K+channel.


Sign in / Sign up

Export Citation Format

Share Document