scholarly journals Specificity of Charge-carrying Residues in the Voltage Sensor of Potassium Channels

2004 ◽  
Vol 123 (3) ◽  
pp. 205-216 ◽  
Author(s):  
Christopher A. Ahern ◽  
Richard Horn

Positively charged voltage sensors of sodium and potassium channels are driven outward through the membrane's electric field upon depolarization. This movement is coupled to channel opening. A recent model based on studies of the KvAP channel proposes that the positively charged voltage sensor, christened the “voltage-sensor paddle”, is a peripheral domain that shuttles its charged cargo through membrane lipid like a hydrophobic cation. We tested this idea by attaching charged adducts to cysteines introduced into the putative voltage-sensor paddle of Shaker potassium channels and measuring fractional changes in the total gating charge from gating currents. The only residues capable of translocating attached charges through the membrane-electric field are those that serve this function in the native channel. This remarkable specificity indicates that charge movement involves highly specialized interactions between the voltage sensor and other regions of the protein, a mechanism inconsistent with the paddle model.

1999 ◽  
Vol 114 (5) ◽  
pp. 723-742 ◽  
Author(s):  
Leon D. Islas ◽  
Fred J. Sigworth

The members of the voltage-dependent potassium channel family subserve a variety of functions and are expected to have voltage sensors with different sensitivities. The Shaker channel of Drosophila, which underlies a transient potassium current, has a high voltage sensitivity that is conferred by a large gating charge movement, ∼13 elementary charges. A Shaker subunit's primary voltage-sensing (S4) region has seven positively charged residues. The Shab channel and its homologue Kv2.1 both carry a delayed-rectifier current, and their subunits have only five positively charged residues in S4; they would be expected to have smaller gating-charge movements and voltage sensitivities. We have characterized the gating currents and single-channel behavior of Shab channels and have estimated the charge movement in Shaker, Shab, and their rat homologues Kv1.1 and Kv2.1 by measuring the voltage dependence of open probability at very negative voltages and comparing this with the charge–voltage relationships. We find that Shab has a relatively small gating charge, ∼7.5 eo. Surprisingly, the corresponding mammalian delayed rectifier Kv2.1, which has the same complement of charged residues in the S2, S3, and S4 segments, has a gating charge of 12.5 eo, essentially equal to that of Shaker and Kv1.1. Evidence for very strong coupling between charge movement and channel opening is seen in two channel types, with the probability of voltage-independent channel openings measured to be below 10−9 in Shaker and below 4 × 10−8 in Kv2.1.


1999 ◽  
Vol 114 (2) ◽  
pp. 305-336 ◽  
Author(s):  
Frank T. Horrigan ◽  
Richard W. Aldrich

Large-conductance Ca2+-activated K+ channels can be activated by membrane voltage in the absence of Ca2+ binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca2+-activated K+ channels in the virtual absence of Ca2+ (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge–voltage relationship (Q–V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G–V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (τON = 60 μs at +200 mV, τOFF = 16 μs at −80 mV). However, QOFF increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of IK activation. The slow onset of this gating charge prevents its detection as a component of IgON, although it represents ∼40% of the total charge moved at +140 mV. The decay of IgOFF is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277–304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C–C, O–O, and C–O transitions.


2006 ◽  
Vol 128 (6) ◽  
pp. 745-753 ◽  
Author(s):  
Kevin Dougherty ◽  
Manuel Covarrubias

Dipeptidyl aminopeptidase–like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U. Lin, M.J. Saganich, T. McCormack, K.O. Akinsanya, S.Y. Qi, and B. Rudy. 2005. J. Biol. Chem. 280:18853–18861). However, the underlying mechanism of action is unknown. We hypothesized that a unique interaction between the Kv4.2 channel and a DPLP found in brain (DPPX-S) may remodel the channel's voltage-sensing domain. To test this hypothesis, we implemented a robust experimental system to measure Kv4.2 gating currents and study gating charge dynamics in the absence and presence of DPPX-S. The results demonstrated that coexpression of Kv4.2 and DPPX-S causes a −26 mV parallel shift in the gating charge-voltage (Q-V) relationship. This shift is associated with faster outward movements of the gating charge over a broad range of relevant membrane potentials and accelerated gating charge return upon repolarization. In sharp contrast, DPPX-S had no effect on gating charge movements of the Shaker B Kv channel. We propose that DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement. The remodeling of gating charge dynamics may involve specific protein–protein interactions of the DPPX-S's transmembrane segment with the voltage-sensing and pore domains of the Kv4.2 channel. This mechanism may determine the characteristic fast operation of neuronal Kv4 channels in the subthreshold range of membrane potentials.


2013 ◽  
Vol 141 (4) ◽  
pp. 431-443 ◽  
Author(s):  
Zhuren Wang ◽  
Ying Dou ◽  
Samuel J. Goodchild ◽  
Zeineb Es-Salah-Lamoureux ◽  
David Fedida

The human ether-á-go-go–related gene (hERG) K+ channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q1 and Q2, with V1/2’s of −55.7 (equivalent charge, z = 1.60) and −54.2 mV (z = 1.30), respectively, with the Q2 charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q1 and Q2, decreasing to 4.3 ms for Q2 at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V1/2 of −64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q1 and Q2 charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.


2000 ◽  
Vol 116 (3) ◽  
pp. 341-348 ◽  
Author(s):  
James A. Morrill ◽  
Stephen C. Cannon

Skeletal muscle dihydropyridine (DHP) receptors function both as voltage-activated Ca2+ channels and as voltage sensors for coupling membrane depolarization to release of Ca2+ from the sarcoplasmic reticulum. In skeletal muscle, the principal or α1S subunit occurs in full-length (∼10% of total) and post-transcriptionally truncated (∼90%) forms, which has raised the possibility that the two functional roles are subserved by DHP receptors comprised of different sized α1S subunits. We tested the functional properties of each form by injecting oocytes with cRNAs coding for full-length (α1S) or truncated (α1SΔC) α subunits. Both translation products were expressed in the membrane, as evidenced by increases in the gating charge (Qmax 80–150 pC). Thus, oocytes provide a robust expression system for the study of gating charge movement in α1S, unencumbered by contributions from other voltage-gated channels or the complexities of the transverse tubules. As in recordings from skeletal muscle, for heterologously expressed channels the peak inward Ba2+ currents were small relative to Qmax. The truncated α1SΔC protein, however, supported much larger ionic currents than the full-length product. These data raise the possibility that DHP receptors containing the more abundant, truncated form of the α1S subunit conduct the majority of the L-type Ca2+ current in skeletal muscle. Our data also suggest that the carboxyl terminus of the α1S subunit modulates the coupling between charge movement and channel opening.


1997 ◽  
Vol 72 (1) ◽  
pp. 77-84 ◽  
Author(s):  
R.S. Hurst ◽  
M.J. Roux ◽  
L. Toro ◽  
E. Stefani

1998 ◽  
Vol 111 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Fred S.P. Chen ◽  
David Fedida

4-Aminopyridine (4-AP) binds to potassium channels at a site or sites in the inner mouth of the pore and is thought to prevent channel opening. The return of hKv1.5 off-gating charge upon repolarization is accelerated by 4-AP and it has been suggested that 4-AP blocks slow conformational rearrangements during late closed states that are necessary for channel opening. On the other hand, quinidine, an open channel blocker, slows the return or immobilizes off-gating charge only at opening potentials (>−25 mV). The aim of this study was to use quini-dine as a probe of open channels to test the kinetic state of 4-AP-blocked channels. In the presence of 0.2–1 mM 4-AP, quinidine slowed charge return and caused partial charge immobilization, corresponding to an increase in the Kd of ∼20-fold. Peak off-gating currents were reduced and decay was slowed ∼2- to 2.5-fold at potentials negative to the threshold of channel activation and during depolarizations shorter than normally required for channel activation. This demonstrated access of quinidine to 4-AP-blocked channels, a lack of competition between the two drugs, and implied allosteric modulation of the quinidine binding site by 4-AP resident within the channel. Single channel recordings also showed that quinidine could modulate the 4-AP-induced closure of the channels, with the result that frequent channel reopenings were observed when both drugs were present. We propose that 4-AP-blocked channels exist in a partially open, nonconducting state that allows access to quinidine, even at more negative potentials and during shorter depolarizations than those required for channel activation.


2012 ◽  
Vol 139 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Enrico Leipold ◽  
Adolfo Borges ◽  
Stefan H. Heinemann

Scorpion β toxins, peptides of ∼70 residues, specifically target voltage-gated sodium (NaV) channels to cause use-dependent subthreshold channel openings via a voltage–sensor trapping mechanism. This excitatory action is often overlaid by a not yet understood depressant mode in which NaV channel activity is inhibited. Here, we analyzed these two modes of gating modification by β-toxin Tz1 from Tityus zulianus on heterologously expressed NaV1.4 and NaV1.5 channels using the whole cell patch-clamp method. Tz1 facilitated the opening of NaV1.4 in a use-dependent manner and inhibited channel opening with a reversed use dependence. In contrast, the opening of NaV1.5 was exclusively inhibited without noticeable use dependence. Using chimeras of NaV1.4 and NaV1.5 channels, we demonstrated that gating modification by Tz1 depends on the specific structure of the voltage sensor in domain 2. Although residue G658 in NaV1.4 promotes the use-dependent transitions between Tz1 modification phenotypes, the equivalent residue in NaV1.5, N803, abolishes them. Gating charge neutralizations in the NaV1.4 domain 2 voltage sensor identified arginine residues at positions 663 and 669 as crucial for the outward and inward movement of this sensor, respectively. Our data support a model in which Tz1 can stabilize two conformations of the domain 2 voltage sensor: a preactivated outward position leading to NaV channels that open at subthreshold potentials, and a deactivated inward position preventing channels from opening. The results are best explained by a two-state voltage–sensor trapping model in that bound scorpion β toxin slows the activation as well as the deactivation kinetics of the voltage sensor in domain 2.


2005 ◽  
Vol 126 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Frank T. Horrigan ◽  
Stefan H. Heinemann ◽  
Toshinori Hoshi

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state.


Sign in / Sign up

Export Citation Format

Share Document