scholarly journals Synaptic vesicles burst into sight

2020 ◽  
Vol 152 (12) ◽  
Author(s):  
Ben Short

JGP study shows that small voltage changes disrupt semi-regular bursts of vesicle release from rod photoreceptors, potentially facilitating low-light vision.

2006 ◽  
Vol 34 (5) ◽  
pp. 939-941 ◽  
Author(s):  
R.J. Kittel ◽  
S. Hallermann ◽  
S. Thomsen ◽  
C. Wichmann ◽  
S.J. Sigrist ◽  
...  

Neurotransmitter release at chemical synapses occurs when synaptic vesicles fuse to the presynaptic membrane at a specialized site termed the active zone. The depolarization-induced fusion is highly dependent on calcium ions, and, correspondingly, the transmission characteristics of synapses are thought to be influenced by the spatial arrangement of voltage-gated calcium channels with respect to vesicle release sites. Here, we review the involvement of the Drosophila Bruchpilot (BRP) protein in active zone assembly, a process that is required for the clustering of presynaptic calcium channels to ensure efficient vesicle release.


2001 ◽  
Vol 18 (5) ◽  
pp. 711-724 ◽  
Author(s):  
JULIA SHAND ◽  
MICHAEL A. ARCHER ◽  
NICOLE THOMAS ◽  
JENNIFER CLEARY

An investigation of retinal specializations was carried out in larval and juvenile dhufish, Glaucosoma hebraicum (Glaucosomidae, Teleostei). The development of photoreceptors and formation of the retinal mosaic was followed by light and electron microscopy. At hatching the eye was undifferentiated. Cone photoreceptors were present by day 3 posthatch (dph), when exogenous feeding began. Single and multiple cones were present in a row arrangement from 3 dph to 20 dph, when the first rod nuclei were observed. Between 20 dph and approximately 3 months posthatch (mph), the row arrangement was replaced by a square mosaic of four double cones surrounding a single cone, and the cones increased in size, with the outer segments reaching up to 30 μm in length. During the period of spatial rearrangement, triple cones were often observed. From their first appearance, rod photoreceptors were added rapidly. Investigation of ganglion cell topography in 3-mph fish that had attained the adult-like square photoreceptor mosaic was carried out using retinal wholemounts. The highest densities of neurones in the ganglion cell layer were in temporal retina but no well-defined area centralis was observed. Microspectrophotometric measurements of the visual pigments within the outer segments of the photoreceptors of 3-mph fish revealed double cones with identical absorption spectra in each member of the outer segment, and the wavelength of maximum absorption (λmax) located at 522 nm. Single cones were found to possess a visual pigment with λmax at 460 nm and rods with a λmax of 498 nm. The results imply that the larvae and juveniles are adapted for survival in coastal waters and may be active in relatively low light levels from early stages of development.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zhao Xuan ◽  
Laura Manning ◽  
Jessica Nelson ◽  
Janet E Richmond ◽  
Daniel A Colón-Ramos ◽  
...  

Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release.


2019 ◽  
Author(s):  
Luke P. Tyrrell ◽  
Leandro B.C. Teixeira ◽  
Richard R. Dubielzig ◽  
Diana Pita ◽  
Patrice Baumhardt ◽  
...  

The keen visual systems of birds have been relatively well-studied. The foundations of avian vision rest on their cone and rod photoreceptors. Most birds use four cone photoreceptor types for color vision, a fifth cone for achromatic tasks, and a rod for low-light levels. The cones, along with their oil droplets, and rods are conserved across birds – with the exception of a few shifts in spectral sensitivity – despite taxonomic, behavioral and ecological differences. Here, however, we describe a novel photoreceptor in a group of New World flycatchers (Empidonax spp.) in which the traditional oil droplet is replaced with a complex of electron-dense megamitochondria surrounded by hundreds of small, orange oil droplets. These photoreceptors were unevenly distributed across the retina, being present in the central region (including in the fovea), but absent from the retinal periphery and the area temporalis. Many bird species have had their oil droplets and photoreceptors characterized, but only the two flycatchers described here (E. virescens and E. minimus) possess this unusual structure. We discuss the potential functional significance of the unique sub-cellular structure in these photoreceptors providing an additional visual channel for these small predatory songbirds.


2006 ◽  
Vol 18 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Paul T. Clark ◽  
Mark C. W. van Rossum

The sparsity of photons at very low light levels necessitates a nonlinear synaptic transfer function between the rod photoreceptors and the rod-bipolar cells. We examine different ways to characterize the performance of the pathway: the error rate, two variants of the mutual information, and the signal-to-noise ratio. Simulation of the pathway shows that these approaches yield substantially different performance at very low light levels and that maximizing the signal-to-noise ratio yields the best performance when judged from simulated images. The results are compared to recent data.


2012 ◽  
Vol 199 (6) ◽  
pp. 883-891 ◽  
Author(s):  
Rhea van de Bospoort ◽  
Margherita Farina ◽  
Sabine K. Schmitz ◽  
Arthur de Jong ◽  
Heidi de Wit ◽  
...  

Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2–null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.


2018 ◽  
Author(s):  
Meraj Ramezani ◽  
Marcus M. Wilkes ◽  
Tapojyoti Das ◽  
David Holowka ◽  
David Eliezer ◽  
...  

ABSTRACTWe characterized phenotypes in RBL-2H3 mast cells transfected with human alpha synuclein (a-syn) using stimulated exocytosis of recycling endosomes as a proxy for similar activities of synaptic vesicles in neurons. We found that low expression of a-syn inhibits stimulated exocytosis and that higher expression causes slight enhancement. NMR measurements of membrane interactions correlate with these functional effects: they are eliminated differentially by mutants that perturb helical structure in the helix 1 (A30P) or NAC/helix-2 (V70P) regions of membrane-bound a-syn, but not by other PD-associated mutants or C-terminal truncation. We further found that a-syn (but not A30P or V70P mutants) associates weakly with mitochondria, but this association increases markedly under conditions of cellular stress. These results highlight the importance of specific structural features of a-syn in regulating vesicle release, and point to a potential role for a-syn in perturbing mitochondrial function under pathological conditions.


1985 ◽  
Vol 101 (1) ◽  
pp. 217-226 ◽  
Author(s):  
M I Johnson ◽  
K Paik ◽  
D Higgins

Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously.


Sign in / Sign up

Export Citation Format

Share Document