forward genetic screens
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Macaulie A Casey ◽  
Jonathon T Hill ◽  
Kazuyuki Hoshijima ◽  
Chase D Bryan ◽  
Suzanna L Gribble ◽  
...  

Abstract Morphogenesis, the formation of three-dimensional organ structures, requires precise coupling of genetic regulation and complex cell behaviors. The genetic networks governing many morphogenetic systems, including that of the embryonic eye, are poorly understood. In zebrafish, several forward genetic screens have sought to identify factors regulating eye development. These screens often look for eye defects at stages after the optic cup is formed and when retinal neurogenesis is under way. This approach can make it difficult to identify mutants specific for morphogenesis, as opposed to neurogenesis. To this end, we carried out a forward genetic, small-scale haploid mutagenesis screen in zebrafish (Danio rerio) to identify factors that govern optic cup morphogenesis. We screened ∼100 genomes and isolated shutdown corner (sco), a mutant which exhibits multiple tissue defects and harbors a ∼10 Mb deletion that encompasses 89 annotated genes. Using a combination of live imaging and antibody staining, we found cell proliferation, cell death, and tissue patterning defects in the sco optic cup. We also observed other phenotypes, including paralysis, neuromuscular defects, and ocular vasculature defects. To date, the largest deletion mutants reported in zebrafish are engineered using CRISPR-Cas9 and are less than 300 kb. Because of the number of genes within the deletion interval, shutdown corner (Df(Chr05:sco)z207) could be a useful resource to the zebrafish community, as it may be helpful for gene mapping, understanding genetic interactions, or for study of the many genes lost in the mutant.


Author(s):  
Sarah Robinson-Thiewes ◽  
Aaron M Kershner ◽  
Heaji Shin ◽  
Kimberly A Haupt ◽  
Peggy Kroll-Connor ◽  
...  

Abstract GLP-1/Notch signaling and a downstream RNA regulatory network maintain germline stem cells (GSCs) in Caenorhabditis elegans. In mutants lacking the GLP-1 receptor, all GSCs enter the meiotic cell cycle precociously and differentiate into sperm. This dramatic GSC defect is called the “Glp” phenotype. The lst-1 and sygl-1 genes are direct targets of Notch transcriptional activation and functionally redundant. Whereas single lst-1 and sygl-1 mutants are fertile, lst-1 sygl-1 double mutants are sterile with a Glp phenotype. We set out to identify genes that function redundantly with either lst-1 or sygl-1 to maintain GSCs. To this end, we conducted forward genetic screens for mutants with a Glp phenotype in genetic backgrounds lacking functional copies of either lst-1 or sygl-1. The screens generated nine glp-1 alleles, two lst-1 alleles, and one allele of pole-1, which encodes the catalytic subunit of DNA polymerase ε. Three glp-1 alleles reside in Ankyrin (ANK) repeats not previously mutated. pole-1 single mutants have a low penetrance Glp phenotype that is enhanced by loss of sygl-1. Thus, the screen uncovered one locus that interacts genetically with sygl-1 and generated useful mutations for further studies of GSC regulation.


2021 ◽  
Author(s):  
Daniel F. Midkiff ◽  
Adriana San Miguel

Genetic screens have been widely used to identify genetic pathways that control specific biological functions. In C. elegans, forward genetic screens rely on the isolation of reproductively active mutants that can self-propagate clonal populations. Since aged individuals are unable to generate clonal populations, screens that target post-reproductive phenotypes, such as longevity, are challenging. In this work, we developed an approach that combines microfluidic technologies and image processing to perform a high-throughput, automated screen for mutants with shortened lifespan using protein aggregation as a marker for aging. We take advantage of microfluidics for maintaining a reproductively-active adult mutagenized population and for performing serial high-throughput analysis and sorting of animals with increased protein aggregation, using fluorescently labeled PAB-1 as a readout. We identified five mutants with increased aggregation levels, of which two exhibited a reduced lifespan. We demonstrate that lifespan mutants can be identified by screening for accelerated protein aggregation through quantitative analysis of fluorescently-labeled aggregates in populations that do not require conditional sterilization or manual separation of parental and progeny populations. We further analyzed the morphology of protein aggregates and reveal that patterns of aggregation in naturally-aging animals differ from mutants with increased aggregation, suggesting aggregate growth is time-dependent. This screening approach can be customized to other non-developmental phenotypes that appear during adulthood, as well as to other aging markers to identify additional longevity-regulating genetic pathways.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 641-642
Author(s):  
Adrienne Wang ◽  
Ming Yang ◽  
Cecilia Fitzgerald-Cook ◽  
Ben Harrison ◽  
Akimi Green ◽  
...  

Abstract Despite significant progress in identifying risk factors for late-onset Alzheimer’s Disease (LOAD), much of the variance in disease pathogenesis remains unexplained, likely due to the contribution of many genes of small effect size. Model organisms such as Drosophila Melanogaster exhibit conservation in both disease-causing genes and cellular processes implicated in Alzheimer’s Disease (AD), offering a genetically tractable model that can be statistically leveraged to identify causal variants. Here, we combine a Drosophila model of AD with the Drosophila Genetic Reference Panel (DGRP), a model of natural variation consisting of over 200 fully sequenced, isogenic lines derived from a wild-caught population. Expression of two proteins closely associated with AD pathogenesis, A□42 and Tau, in the Drosophila eye results in a “rough eye” phenotype, an easily quantifiable phenotype caused by degeneration of the ommatidial array. By quantifying the degree of A□42- and Tau-mediated degeneration across 164 lines of the DGRP and using a gene-based approach to map associations, we have identified and validated a subset of naturally occurring modifiers of degeneration in Drosophila. Enrichment analysis reveals that the set of genes identified in our screen show significant enrichment for genes identified as significant or suggestive (4x10-6>p>2x10-11) in human GWAS studies. The results presented here provide proof-of-principal for an approach that combines the strengths of forward genetic screens in model organisms with the power of human GWAS studies to identify and validate potential risk factors that have been difficult to detect in human studies alone.


Biology Open ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Lin Shi ◽  
Ruiyan Kong ◽  
Zhengran Li ◽  
Hang Zhao ◽  
Rui Ma ◽  
...  

ABSTRACT Adult stem cells are critical for the maintenance of tissue homeostasis. However, how the proliferation and differentiation of intestinal stem cells (ISCs) are regulated remains not fully understood. Here, we find a mutant, stum 9-3, affecting the proliferation and differentiation of Drosophila adult ISCs in a forward genetic screen for factors regulating the proliferation and differentiation ISCs. stum 9-3 acts through the conserved Notch signaling pathway, upstream of the S2 cleavage of the Notch receptor. Interestingly, the phenotype of stum 9-3 mutant is not caused by disruption of stumble (stum), where the p-element is inserted. Detailed mapping, rescue experiments and mutant characterization show that stum 9-3 is a new allele of O-fucosyltransferase 1 (O-fut1). Our results indicate that unexpected mutants with interesting phenotype could be recovered in forward genetic screens using known p-element insertion stocks.


2021 ◽  
Author(s):  
Sarah Robinson-Thiewes ◽  
Aaron M. Kershner ◽  
Heaji Shin ◽  
Kimberly A. Haupt ◽  
Peggy Kroll-Connor ◽  
...  

AbstractGermline stem cells (GSCs) in Caenorhabditis elegans are maintained by GLP-1/Notch signaling from the niche and by a downstream RNA regulatory network. Loss of the GLP-1 receptor causes GSCs to precociously undergo meiotic differentiation, the “Glp” phenotype, due to a failure to self-renew. lst-1 and sygl-1 are functionally redundant direct targets of GLP-1 signaling whose gene products work with PUF RNA binding proteins to promote GSC self-renewal. Whereas single loss-of-function mutants are fertile, lst-1 sygl-1 double mutants are sterile and Glp. We set out to identify genes that function redundantly with either lst-1 or sygl-1 to maintain GSCs. To this end, we conducted forward genetic screens for Glp mutants in genetic backgrounds lacking functional copies of either lst-1 or sygl-1. The screens generated nine glp-1 alleles, two lst-1 alleles, and one allele of pole-1, which encodes the catalytic subunit of DNA polymerase ε. Three glp-1 alleles reside in Ankyrin (ANK) repeats not previously mutated. pole-1 single mutants have a low penetrance Glp that is enhanced by loss of either lst-1 or sygl-1. Thus, the screen uncovered one locus that interacts genetically with both lst-1 and sygl-1 and generated useful mutations for further studies of GSC regulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yi Sun ◽  
Guang Liu ◽  
Yue Huang

Transposons are mobile genetic elements in the genome. The piggyBac (PB) transposon system is increasingly being used for stem cell research due to its high transposition efficiency and seamless excision capacity. Over the past few decades, forward genetic screens based on PB transposons have been successfully established to identify genes associated with drug resistance and stem cell-related characteristics. Moreover, PB transposon is regarded as a promising gene therapy vector and has been used in some clinically relevant stem cells. Here, we review the recent progress on the basic biology of PB, highlight its applications in current stem cell research, and discuss its advantages and challenges.


2021 ◽  
Author(s):  
Zhao Xuan ◽  
Sisi Yang ◽  
Sarah E Hill ◽  
Benjamin Clark ◽  
Laura Manning ◽  
...  

In neurons, autophagy is temporally and spatially regulated to occur near presynaptic sites. How trafficking of autophagy proteins is regulated to support synaptic autophagy is not well understood. From forward genetic screens, we identify a role for the long isoform of the active zone protein Clarinet (CLA-1L) in regulating trafficking of autophagy protein ATG-9 at synapses, and presynaptic autophagy. ATG-9 is a transmembrane protein that undergoes activity-dependent exo-endocytosis at synapses, and mutations in CLA-1L result in abnormal accumulation of ATG-9 into clathrin-rich endocytic intermediates. CLA-1L extends from the active zone to the periactive zone, and genetically interacts with periactive zone proteins required for clathrin-dependent endocytosis. We find that CLA-1L is specifically required for sorting of ATG-9 at synapses, likely via endosome-mediated endocytosis, and for activity-dependent presynaptic autophagy. Our findings provide mechanistic insights into how active zone proteins regulate key steps of ATG-9 exo-endocytosis, a process that could couple the activity state of the neuron and autophagy.


2021 ◽  
Author(s):  
Jasmin Schubert ◽  
Yanru Li ◽  
Marta A. Mendes ◽  
Hugh Dickinson ◽  
Célia Baroux

Abstract Background: Elucidating the genetic and molecular control of plant reproduction requires the deployment of functional approaches based, for instance, on reverse or forward genetic screens. The loss-of-function of essential genes, however, may lead to plant lethality prior to reproductive developmentt or to the formation of sterile structures before the organ-of-interest can be analysed. In these cases, inducible approaches that enable a spatial and temporal control of the genetic perturbation are extremely valuable. Genetic induction in reproductive organs, such as the ovule, deeply embedded in the flower, is a delicate procedure that requires both optimization and validation. Results: Here we report on a streamlined procedure enabling reliable induction of gene expression in Arabidopsis ovule and anther tissues using the popular pOP/LhGR Dex-inducible system. We demonstrate its efficiency and reliability using fluorescent reporter proteins and histochemical detection of the GUS reporter gene. Conclusion: The pOP/LhGR system allows for a rapid, efficient and reliable induction of transgenes in developing ovules without compromising developmental progression. This approach opens new possibilities for the functional analysis of candidate regulators in sporogenesis and gametogenesis, which are otherwise affected by early lethality of conventional, stable mutants.


2021 ◽  
Author(s):  
Peng Yi ◽  
Noelle Morrow

The CRISPR/Cas9 genome editing system has been one of the greatest scientific discoveries in the last decade. The highly efficient and precise editing ability of this technology is of great therapeutic value and benefits the basic sciences as an advantageous research tool. In recent years, forward genetic screens utilizing CRISPR technology have been widely adopted, with genome-wide or pathway-focused screens leading to important and novel discoveries. CRISPR screens have been used primarily in cancer biology, virology and basic cell biology; but they have rarely been applied to diabetes research. A potential reason for this is that diabetes related research can be more complicated, often involving cross-talk between multiple organs or cell types. Nevertheless, many questions can still be reduced to the study of a single cell type if assays are carefully designed. Here we review the application of CRISPR screen technology and provide perspective on how it can be used in diabetes research.


Sign in / Sign up

Export Citation Format

Share Document