scholarly journals Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zhao Xuan ◽  
Laura Manning ◽  
Jessica Nelson ◽  
Janet E Richmond ◽  
Daniel A Colón-Ramos ◽  
...  

Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release.

2017 ◽  
Author(s):  
Zhao Xuan ◽  
Laura Manning ◽  
Jessica Nelson ◽  
Janet E. Richmond ◽  
Daniel Colón-Ramos ◽  
...  

AbstractActive zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens we isolated a novel C. elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, reduced spontaneous neurotransmitter release, increased synaptic depression and reduced synapse number. Ultrastructurally, cla-1 mutants have fewer synaptic vesicles adjacent to the dense projection and an increased number of docked vesicles. Cla-1 encodes 3 isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The short isoform localizes exclusively to the active zone while a longer ~9000 amino acid isoform colocalizes with synaptic vesicles. Specific loss of CLA-1L results in synaptic vesicle clustering defects and increased synaptic depression, but not in reduced synapse number or mini frequency. Together our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, synaptic vesicle clustering and release.


2006 ◽  
Vol 34 (5) ◽  
pp. 939-941 ◽  
Author(s):  
R.J. Kittel ◽  
S. Hallermann ◽  
S. Thomsen ◽  
C. Wichmann ◽  
S.J. Sigrist ◽  
...  

Neurotransmitter release at chemical synapses occurs when synaptic vesicles fuse to the presynaptic membrane at a specialized site termed the active zone. The depolarization-induced fusion is highly dependent on calcium ions, and, correspondingly, the transmission characteristics of synapses are thought to be influenced by the spatial arrangement of voltage-gated calcium channels with respect to vesicle release sites. Here, we review the involvement of the Drosophila Bruchpilot (BRP) protein in active zone assembly, a process that is required for the clustering of presynaptic calcium channels to ensure efficient vesicle release.


Author(s):  
Peggy Mason

The biochemical and physiological processes of neurotransmitter release from an active zone, a specialized region of synaptic membrane, are examined. Synaptic vesicles containing neurotransmitters are docked at the active zone and then primed for release by SNARE complexes that bring them into extreme proximity to the plasma membrane. Entry of calcium ions through voltage-gated calcium channels triggers synaptic vesicle fusion with the synaptic terminal membrane and the consequent diffusion of neurotransmitter into the synaptic cleft. Release results when the fusion pore bridging the synaptic vesicle and plasma membrane widens and neurotransmitter from the inside of the synaptic vesicle diffuses into the synaptic cleft. Membrane from the active zone membrane is endocytosed, and synaptic vesicle proteins are then reassembled into recycled synaptic vesicles, allowing for more rounds of neurotransmitter release.


2008 ◽  
Vol 183 (5) ◽  
pp. 881-892 ◽  
Author(s):  
Mingyu Gu ◽  
Kim Schuske ◽  
Shigeki Watanabe ◽  
Qiang Liu ◽  
Paul Baum ◽  
...  

Synaptic vesicles must be recycled to sustain neurotransmission, in large part via clathrin-mediated endocytosis. Clathrin is recruited to endocytic sites on the plasma membrane by the AP2 adaptor complex. The medium subunit (μ2) of AP2 binds to cargo proteins and phosphatidylinositol-4,5-bisphosphate on the cell surface. Here, we characterize the apm-2 gene (also called dpy-23), which encodes the only μ2 subunit in the nematode Caenorhabditis elegans. APM-2 is highly expressed in the nervous system and is localized to synapses; yet specific loss of APM-2 in neurons does not affect locomotion. In apm-2 mutants, clathrin is mislocalized at synapses, and synaptic vesicle numbers and evoked responses are reduced to 60 and 65%, respectively. Collectively, these data suggest AP2 μ2 facilitates but is not essential for synaptic vesicle recycling.


Author(s):  
Kaitlyn E. Fouke ◽  
M. Elizabeth Wegman ◽  
Sarah A. Weber ◽  
Emily B. Brady ◽  
Cristina Román-Vendrell ◽  
...  

Neurotransmission relies critically on the exocytotic release of neurotransmitters from small synaptic vesicles (SVs) at the active zone. Therefore, it is essential for neurons to maintain an adequate pool of SVs clustered at synapses in order to sustain efficient neurotransmission. It is well established that the phosphoprotein synapsin 1 regulates SV clustering at synapses. Here, we demonstrate that synuclein, another SV-associated protein and synapsin binding partner, also modulates SV clustering at a vertebrate synapse. When acutely introduced to unstimulated lamprey reticulospinal synapses, a pan-synuclein antibody raised against the N-terminal domain of α-synuclein induced a significant loss of SVs at the synapse. Both docked SVs and the distal reserve pool of SVs were depleted, resulting in a loss of total membrane at synapses. In contrast, antibodies against two other abundant SV-associated proteins, synaptic vesicle glycoprotein 2 (SV2) and vesicle-associated membrane protein (VAMP/synaptobrevin), had no effect on the size or distribution of SV clusters. Synuclein perturbation caused a dose-dependent reduction in the number of SVs at synapses. Interestingly, the large SV clusters appeared to disperse into smaller SV clusters, as well as individual SVs. Thus, synuclein regulates clustering of SVs at resting synapses, as well as docking of SVs at the active zone. These findings reveal new roles for synuclein at the synapse and provide critical insights into diseases associated with α-synuclein dysfunction, such as Parkinson’s disease.


2007 ◽  
Vol 98 (1) ◽  
pp. 478-487 ◽  
Author(s):  
Katharine L. Rowley ◽  
Carlos B. Mantilla ◽  
Leonid G. Ermilov ◽  
Gary C. Sieck

Synaptic vesicle release at the neuromuscular junction (NMJ) is highly reliable and is vital to the success of synaptic transmission. We examined synaptic vesicle number, distribution, and release at individual type-identified rat diaphragm NMJ. Three-dimensional reconstructions of electron microscopy images were used to obtain novel measurements of active zone distribution and the number of docked synaptic vesicles. Diaphragm muscle-phrenic nerve preparations were used to perform electrophysiological measurements of the decline in quantal content (QC) during repetitive phrenic nerve stimulation. The number of synaptic vesicles available for release vastly exceeds those released with a single stimulus, thus reflecting a relatively low probability of release for individual docked vesicles and at each active zone. There are two components that describe the decline in QC resulting from repetitive stimulation: a rapid phase (<0.5 s) and a delayed phase (<2.5 s). Differences in the initial rapid decline in QC were evident across type-identified presynaptic terminals (fiber type classification based on myosin heavy chain composition). At terminals innervating type IIx and/or IIb fibers, the initial decline in QC during repetitive stimulation matched the predicted depletion of docked synaptic vesicles. In contrast, at terminals innervating type I or IIa fibers, a faster than predicted decline in QC with repetitive stimulation suggests that a decrease in the probability of release at these terminals plays a role in addition to depletion of docked vesicles. Differences in QC decline likely reflect fiber-type specific differences in activation history and correspond with well-described differences in neuromuscular transmission across muscle fiber types.


2006 ◽  
Vol 34 (1) ◽  
pp. 81-87 ◽  
Author(s):  
N. Vijayakrishnan ◽  
K. Broadie

Forward genetic screens have identified numerous proteins with critical roles in neurotransmission. One particularly fruitful screening target in Drosophila has been TS (temperature-sensitive) paralytic mutants, which have revealed proteins acutely required in neuronal signalling. In the present paper, we review recent insights and current questions from one recently cloned TS paralytic mutant, rbo (rolling blackout). The rbo mutant identifies a putative integral lipase of the pre-synaptic plasma membrane that is required for the SV (synaptic vesicle) cycle. Identification of this mutant adds to a growing body of evidence that lipid-modifying enzymes locally control specialized lipid microenvironments and lipid signalling pathways with key functions regulating neurotransmission strength. The RBO protein is absolutely required for phospholipase C signalling in phototransduction. We posit that RBO might be required to regulate the availability of fusogenic lipids such as phosphatidylinositol 4,5-bisphosphate and diacylglycerol that may directly modify membrane properties and/or activate lipid-binding fusogenic proteins mediating SV exocytosis.


Sign in / Sign up

Export Citation Format

Share Document