scholarly journals I. After-Effects of Repetitive Activity in a Nerve Ending

1959 ◽  
Vol 43 (2) ◽  
pp. 335-345 ◽  
Author(s):  
Werner R. Loewenstein ◽  
Stanley Cohen

Repetitive mechanical stimulation causes depression of excitability in isolated Pacinian corpuscles: the mechanical threshold of the sense organ for producing nerve impulses increases progressively with time of repetitive stimulation. The effect is completely reversible; it can be elicited with repetitive stimuli of less than threshold strength. Within certain limits, the depression increases as a function of strength and frequency of the repetitive stimuli.

1959 ◽  
Vol 43 (2) ◽  
pp. 347-376 ◽  
Author(s):  
Werner R. Loewenstein ◽  
Stanley Cohen

Repetitive activity at the non-myelinated ending of Pacinian corpuscles leaves the following after-effects: (1) With certain parameters of repetitive mechanical stimulation of the ending a depression in generator potential is produced. The effect is fully reversible and has low energy requirements. The effect is a transient decrease in responsiveness of the receptor membrane which is unrelated to changes in resting membrane potential. It appears to reflect an inactivation process of the receptor membrane. Within certain limits, the depression increases as a function of strength, frequency, and train duration of repetitive stimuli. (2) With other, more critical parameters of repetitive stimulation a hyperpolarization of the ending and of the first intracorpuscular Ranvier node may be produced. This leads to respectively post-tetanic potentiation of generator potential and increase in nodal firing threshold. The balance of these after-effects determines the threshold for the production of nerve impulses by adequate (mechanical) stimulation of the sense organ. The after-effects of activity at the node can be elicited by dromic (mechanical) stimulation of the ending, as well as by antidromic (electric) stimulation of the axon; the after-effects at the ending can only be produced by dromic and not by antidromic stimulation.


1961 ◽  
Vol 45 (1) ◽  
pp. 105-124 ◽  
Author(s):  
Nobusada Ishiko ◽  
Werner R. Loewenstein

Charge transfer through the receptor membrane of the nonmyelinated ending of Pacinian corpuscles is markedly affected by temperature. The rate of rise and the amplitude of the generator potential in response to a constant mechanical stimulus increase with temperature coefficients of 2.5 and 2.0 respectively. The duration of the falling phase, presumably a purely passive component, and the rise time of the generator potential are but little affected by temperature. The following interpretation is offered: Mechanical stimulation causes the conductance of the receptor membrane to increase and ions to flow along their electrochemical gradients. An energy barrier of about 16,000 cal/mole limits the conductance change. The latter increases, thus, steeply with temperature, causing both the rate of rise and the intensity of the generator current to increase. The membrane of the adjacent Ranvier node behaves in a distinctly different manner. The amplitude of the nodal action potential is little changed over a wide range of temperature, while the durations of its rising and falling phases increase markedly. The electrical threshold of the nodal membrane is rather constant between 40 and 12°C. Below 12°C the threshold rises, and the mechanically elicited generator current fails to meet the threshold requirements of the first node. Cold block of nerve impulse initiation then ensues, although the receptor membrane still continues to produce generator potentials in response to mechanical stimulation.


A preparation of a single Pacinian corpuscle in the cat’s mesentery has been used to study the initiation of nerve impulses in sensory endings. The minimum movement of a mechanical stimulator required to excite a single corpuscle has been found to be 0⋅5 μ in 100 μ sec. It has been difficult to produce repetitive discharges with rectangular pulses of long duration, either mechanical or of constant current. The latency between a mechanical stimulus and the initiation of an impulse has a value around 1⋅5 msec, for threshold stimuli, and this decreases to a minimum value around 0⋅5 msec, as the stimulus is increased; it is altered only slightly, if at all, by changes in the duration of the maintained displacement of the mechanical stimulator. Subthreshold mechanical stimuli have been shown to facilitate stimulation by electrical test shocks. The return of excitability at the ending is independent of the nature of the conditioning stimulus and varies but little with the nature of the test shock. The value of the latency at threshold is unaffected by the relatively refractory state. The relations of these results to various hypotheses are discussed, and it is suggested that these results can all be accounted for in terms of the known properties of axons.


1989 ◽  
Vol 62 (4) ◽  
pp. 854-863 ◽  
Author(s):  
J. M. Laird ◽  
F. Cervero

1. Single-unit electrical activity has been recorded from 42 dorsal horn neurons in the sacral segments of the rat's spinal cord. The sample consisted of 20 multireceptive (class 2) cells with both A- and C-fiber inputs and 22 nocireceptive (class 3) cells. All neurons had cutaneous receptive fields (RFs) on the tail. 2. The RF sizes of the cells and their response thresholds to mechanical stimulation of the skin were determined before and after each of a series of 2-min noxious mechanical stimuli. Up to five such stimuli were delivered at intervals ranging from 10 to 60 min. In most cases, only one cell per animal was tested. 3. The majority of neurons were tested in barbiturate-anesthetized animals. However, to test whether or not this anesthetic influenced the results obtained, experiments were also performed in halothane-anesthetized and decerebrate-spinal preparations. The results from these experiments are considered separately. 4. All of the neurons responded vigorously to the first noxious pinch stimulus and all but one to the rest of the stimuli in the series. The responses of the neurons varied from stimulus to stimulus, but there were no detectable trends in the two groups of cells. 5. The RFs of the class 2 cells showed large increases (624.3 +/- 175.8 mm2, mean +/- SE) after the application of the pinch stimuli. The RFs of the class 3 neurons, which were initially smaller than those of the class 2 cells, either did not increase in size or showed very small increases after the pinch stimuli (38.3 +/- 11.95 mm2, mean +/- SE). 6. Some cells in both groups (6/10 class 2 cells and 7/16 class 3 cells) showed a decrease in mechanical threshold as a result of the noxious mechanical stimulus, but none of the class 3 cells' thresholds dropped below 20 mN into the low-threshold range. 7. The results obtained in the halothane-anesthetized and decerebrate-spinal animals were very similar to those seen in the barbiturate-anesthetized experiments, with the exception that in the decerebrate-spinal animals, the RFs of the class 2 cells were initially larger and showed only small increases.(ABSTRACT TRUNCATED AT 400 WORDS)


2013 ◽  
Vol 53 (5) ◽  
pp. 941-955 ◽  
Author(s):  
Hashem M. Mourad ◽  
Curt A. Bronkhorst ◽  
Francis L. Addessio ◽  
Carl M. Cady ◽  
Donald W. Brown ◽  
...  

2014 ◽  
Vol 112 (2) ◽  
pp. 463-466 ◽  
Author(s):  
Xiaojie Chen ◽  
Paul G. Green ◽  
Jon D. Levine

The vasoactive mediator, endothelin-1, elicits a novel form of hyperalgesia, stimulation-dependent hyperalgesia. Acting on its cognate receptor on the vascular endothelial cell, endothelin-1 produces a state in which mechanical stimulation now elicits release of pronociceptive mediators from endothelium that, in turn, acts at receptors on sensory neurons. The only evidence that octoxynol-9, a surface-active agent that attenuates both endothelial cell function and stimulus-dependent hyperalgesia, does not affect nociceptors is indirect (i.e., octoxynol-9 treatment did not affect behavioral nociceptive threshold or hyperalgesia induced by agents that act directly on nociceptors). To help address the question of whether the attenuation of stimulation-dependent hyperalgesia by octoxynol-9 treatment is due to alteration of nociceptor function, we used in vivo single-fiber electrophysiological recordings. Consistent with our previous behavioral observations, we observed no significant effect of octoxynol-9 on mechanical threshold in nociceptors, their response to sustained suprathreshold mechanical stimulation, conduction velocity, and change in mechanical threshold in response to the direct-acting hyperalgesic agent, PGE2. Although octoxynol-9 did not produce a biologically meaningful change in parameters of nociceptor function, we cannot exclude the possibility of a type II error. However, our data provide preliminary evidence of no effect of octoxynol-9 on nociceptors and are consistent with the suggestion that the primary action of octoxynol-9 in our studies is due to its action on the endothelium.


1980 ◽  
Vol 43 (6) ◽  
pp. 1673-1699 ◽  
Author(s):  
V. Golovchinsky

1. The responses of single cuneate neurons to controled mechanical stimulation of skin were recorded in cats lightly anesthetized with a nitrous oxide-halothane mixture. The discharge patterns and peripheral receptive-field characteristics were studied in neurons driven by sensitive cutaneous mechanoreceptors, including slowly adapting skin mechanoreceptors. Virtually all cuneate neurons display maximum discharge during the velocity component of displacement. 2. Among cuneate neurons encountered in this study, approximately 46% were driven by guard hair mechanoreceptors, 15% were driven by field receptors, and 13% were driven by slowly adapting skin receptors. Neurons responding to stimulation of deep tissues (including claws) were not studied with controlled mechanical stimulation and accounted for 19%. The rest of the neurons were driven by Pacinian corpuscles, received afferent inputs from several different first-order afferents, or were not definitely identified. There was no clear evidence of down hair or high-threshold mechanoreceptor representation. 3. The discharge pattern in response to a constant-velocity stimulus proved most valuable in describing submodality classes of neurons driven by hair and field receptors since sensitivity of these neurons to dynamic and to static phases of stimulation constitute respective continua and, thus, preclude sharp separation into distinct groups. 4. The majority of neurons displayed response properties and receptive fields similar to those of first-order afferents. A minority of cells had receptive fields that were larger than those of primary afferents, with nearly identical modality and velocity characteristics throughout the receptive field. 5. Approximately 2% of recorded neurons displayed convergent properties not encountered in first-order afferents, including neurons driven from receptors of different modalities or from discontinuous receptive fields. 6. Inhibition of neuronal firing generated from outside the receptive field was rarely seen, possibly due to anesthetic conditions. In a small number of neurons, irregularities in the discharge were observed that might indicate inhibitory influences originating from within the receptive field.


1996 ◽  
Vol 76 (3) ◽  
pp. 1540-1544 ◽  
Author(s):  
C. S. Leibrock ◽  
A. R. Marchand ◽  
W. J. Barnes

1. The reflex responses initiated by cuticular stress detector one (CSD1) afferents in anterior levator motor neurnons in the fifth walking leg of crayfish were studied in an in vitro preparation by means of intracellular recordings. 2. The response in the anterior levator reversed with strong mechanical stimulation. Inhibitory responses were correlated with the activation of low-threshold CSD1 units, excitatory responses with the activation of high-threshold CSD1 units. Two opposing reflexes thus originate from the same sense organ at different levels of stimulation. 3. Some low-threshold units were inactive at stimulus strengths that activated the high-threshold units. Other low-threshold units remained active. Their reflex effects were reduced by either pre- or postsynaptic mechanisms. 4. Functionally, this force dependent response reversal could be important in switching from postural/locomotor responses to defensive responses such as limb autotomy.


1960 ◽  
Vol 43 (5) ◽  
pp. 981-998 ◽  
Author(s):  
W. R. Loewenstein ◽  
N. Ishiko

It has previously been shown that the site of production of the generator potential in Pacinian corpuscles is the receptor membrane of the non-myelinated ending, and the site of initiation of the nerve impulse, the adjacent (first) Ranvier node. Effects of membrane polarization of these sites were studied in the present work. Nerve ending and first Ranvier node were isolated by dissection, electric activity was recorded from, and polarizing currents were passed through them. All observations were done at steady levels of polarization, seconds after onset of current flow. The following results were obtained: The amount of charge transferred through the excited receptor membrane is a function of the electrical gradients across the membrane. The generator potential in response to equal mechanical stimuli increases with resting potential of the receptor membrane. The refractory state of the generator potential is not affected by polarization. The electrical threshold for impulse firing at the first Ranvier node (measured by the minimal amplitude of generator potential which elicits a nodal impulse) is nearly minimal at normal resting potential of the node. Both, hyperpolarization and depolarization lead to a rise in nodal threshold. For any level of polarization of nodal and receptor membrane, the threshold for production of impulses by adequate (mechanical) stimulation appears determined by the generator potential-stimulus strength relation and by the electrical threshold of the node.


Sign in / Sign up

Export Citation Format

Share Document