scholarly journals Cation Transport in Escherichia coli

1961 ◽  
Vol 45 (2) ◽  
pp. 355-369 ◽  
Author(s):  
Stanley G. Schultz ◽  
A. K. Solomon

Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply.

1962 ◽  
Vol 46 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Stanley G. Schultz ◽  
Norman L. Wilson ◽  
Wolfgang Epstein

The intracellular Cl concentration in E. coli has been studied as a function of the Cl concentration in the growth medium and the age of the bacterial culture. The ratio of extracellular to intracellular Cl concentration is shown to be 3.0 in the logarithmic phase and 1.13 in the stationary phase, both ratios being independent of the extracellular Cl concentration. If it may be assumed that Cl is passively distributed in this organism, these results are consistent with a transmembrane P.D. of 29 mv, interior negative, during the logarithmic phase, and 3 mv, interior negative, in the stationary phase.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Maryada Garg ◽  
Anoop K. Dobriyal

The GFP protein is a protein of high interest for molecular biologists and biotechnologists. Since 1994, this protein has proved to be an indispensable tool for molecular biology and biotechnology research work. This protein requires only oxygen and an energy source like glucose to work. It gives a green colour in presence of UV to blue light. This protein can be attached with the foreign gene to track its expression. The main aim of the task is to introduce GFP into the given bacterial culture. Induction of the protein gene is followed by Bradford assay; quantification of protein is done using this. The results of gene induction are checked via SDSPAGE and western blot. All preparations are of standard grade and all readings are taken in triplicates. A standard graph is also made to find out the protein in the unknown.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Andrew J. Hryckowian ◽  
Aurelia Battesti ◽  
Justin J. Lemke ◽  
Zachary C. Meyer ◽  
Rodney A. Welch

ABSTRACTRpoS (σS), the general stress response sigma factor, directs the expression of genes under a variety of stressful conditions. Control of the cellular σSconcentration is critical for appropriately scaled σS-dependent gene expression. One way to maintain appropriate levels of σSis to regulate its stability. Indeed, σSdegradation is catalyzed by the ClpXP protease and the recognition of σSby ClpXP depends on the adaptor protein RssB. Three anti-adaptors (IraD, IraM, and IraP) exist inEscherichia coliK-12; each interacts with RssB andinhibitsRssBactivity under different stress conditions, thereby stabilizing σS. Unlike K-12, someE. coliisolates, including uropathogenicE. colistrain CFT073, show comparable cellular levels of σSduring the logarithmic and stationary growth phases, suggesting that there are differences in the regulation of σSlevels amongE. colistrains. Here, we describe IraL, an RssB anti-adaptor that stabilizes σSduring logarithmic phase growth in CFT073 and otherE. coliandShigellastrains. By immunoblot analyses, we show that IraL affects the levels and stability of σSduring logarithmic phase growth. By computational and PCR-based analyses, we reveal thatiraLis found in manyE. colipathotypes but not in laboratory-adapted strains. Finally, by bacterial two-hybrid and copurification analyses, we demonstrate that IraL interacts with RssB by a mechanism distinct from that used by other characterized anti-adaptors. We introduce a fourth RssB anti-adaptor found inE. colispecies and suggest that differences in the regulation of σSlevels may contribute to host and niche specificity in pathogenic and nonpathogenicE. colistrains.IMPORTANCEBacteria must cope with a variety of environmental conditions in order to survive. RpoS (σS), the general stress response sigma factor, directs the expression of many genes under stressful conditions in both pathogenic and nonpathogenicEscherichia colistrains. The regulation of σSlevels and activity allows appropriately scaled σS-dependent gene expression. Here, we describe IraL, an RssB anti-adaptor that, unlike previously described anti-adaptors, stabilizes σSduring the logarithmic growth phase in the absence of additional stress. We also demonstrate thatiraLis found in a large number ofE. coliandShigellaisolates. These data suggest that strains containingiraLare able to initiate σS-dependent gene expression under conditions under which strains withoutiraLcannot. Therefore, IraL-mediated σSstabilization may contribute to host and niche specificity inE. coli.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1750-1760 ◽  
Author(s):  
Katarzyna A. Duda ◽  
Buko Lindner ◽  
Helmut Brade ◽  
Andreas Leimbach ◽  
Elżbieta Brzuszkiewicz ◽  
...  

Mastitis represents one of the most significant health problems of dairy herds. The two major causative agents of this disease are Escherichia coli and Staphylococcus aureus. Of the first, its lipopolysaccharide (LPS) is thought to play a prominent role during infection. Here, we report the O-antigen (OPS, O-specific polysaccharide) structure of the LPS from bovine mastitis isolate E. coli 1303. The structure was determined utilizing chemical analyses, mass spectrometry, and 1D and 2D NMR spectroscopy methods. The O-repeating unit was characterized as -[→4)-β-d-Quip3NAc-(1→3)-α-l-Fucp2OAc-(1→4)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→]- in which the O-acetyl substitution was non-stoichiometric. The nucleotide sequence of the O-antigen gene cluster of E. coli 1303 was also determined. This cluster, located between the gnd and galF genes, contains 13 putative open reading frames, most of which represent unknown nucleotide sequences that have not been described before. The O-antigen of E. coli 1303 was shown to substitute O-7 of the terminal ld-heptose of the K-12 core oligosaccharide. Interestingly, the non-OPS-substituted core oligosaccharide represented a truncated version of the K-12 outer core – namely terminal ld-heptose and glucose were missing; however, it possessed a third Kdo residue in the inner core. On the basis of structural and genetic data we show that the mastitis isolate E. coli 1303 represents a new serotype and possesses the K-12 core type, which is rather uncommon among human and bovine isolates.


Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 385-398 ◽  
Author(s):  
Jana Hejnova ◽  
Ulrich Dobrindt ◽  
Radka Nemcova ◽  
Christophe Rusniok ◽  
Alojz Bomba ◽  
...  

Colonization by the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) has proved to be safe and efficient in the prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants in Czech paediatric clinics over the past three decades. In searching for traits contributing to this beneficial effect related to the gut colonization capacity of the strain, the authors have analysed its genome by DNA–DNA hybridization to E. coli K-12 (MG1655) genomic DNA arrays and to ‘Pathoarrays’, as well as by multiplex PCR, bacterial artificial chromosome (BAC) library cloning and shotgun sequencing. Four hundred and ten E. coli K-12 ORFs were absent from A0 34/86, while 72 out of 456 genes associated with pathogenicity islands of E. coli and Shigella were also detected in E. coli A0 34/86. Furthermore, extraintestinal pathogenic E. coli-related genes involved in iron uptake and adhesion were detected by multiplex PCR, and genes encoding the HlyA and cytotoxic necrotizing factor toxins, together with 21 genes of the uropathogenic E. coli 536 pathogenicity island II, were identified by analysis of 2304 shotgun and 1344 BAC clone sequences of A0 34/86 DNA. Multiple sequence comparisons identified 31 kb of DNA specific for E. coli A0 34/86; some of the genes carried by this DNA may prove to be implicated in the colonization capacity of the strain, enabling it to outcompete pathogens. Among 100 examined BAC clones roughly covering the A0 34/86 genome, one reproducibly conferred on the laboratory strain DH10B an enhanced capacity to persist in the intestine of newborn piglets. Sequencing revealed that this BAC clone carried gene clusters encoding gluconate and mannonate metabolism, adhesion (fim), invasion (ibe) and restriction/modification functions. Hence, the genome of this clinically safe and highly efficient colonizer strain appears to harbour many ‘virulence-associated’ genes. These results highlight the thin line between bacterial ‘virulence’ and ‘fitness' or ‘colonization’ factors, and question the definition of enterobacterial virulence factors.


Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 745-758 ◽  
Author(s):  
Mourad Sabri ◽  
Simon Léveillé ◽  
Charles M. Dozois

An operon encoding a member of the family of ATP-binding cassette (ABC) divalent metal ion transporters, homologous to Salmonella enterica SitABCD, has been identified in the avian pathogenic Escherichia coli (APEC) strain χ7122. The sitABCD genes were located on the virulence plasmid pAPEC-1, and were highly similar at the nucleotide level to the chromosomally encoded sitABCD genes present in Shigella spp. A cloned copy of sitABCD conferred increased growth upon a siderophore-deficient E. coli strain grown in nutrient broth supplemented with the chelator 2,2′-dipyridyl. Ion rescue demonstrated that Sit-mediated growth promotion of this strain was due to the transport of iron. SitABCD mediated increased transport of both iron and manganese as demonstrated by uptake of 55Fe, 59Fe or 54Mn in E. coli K-12 strains deficient for the transport of iron (aroB feoB) and manganese (mntH) respectively. Isotope uptake and transport inhibition studies showed that in the iron transport deficient strain, SitABCD demonstrated a greater affinity for iron than for manganese, and SitABCD-mediated transport was higher for ferrous iron, whereas in the manganese transport deficient strain, SitABCD demonstrated greater affinity for manganese than for iron. Introduction of the APEC sitABCD genes into an E. coli K-12 mntH mutant also conferred increased resistance to the bactericidal effects of hydrogen peroxide. APEC strain χ7122 derivatives lacking either a functional SitABCD or a functional MntH transport system were as resistant to hydrogen peroxide as the wild-type strain, whereas a Δsit ΔmntH double mutant was more sensitive to hydrogen peroxide. Overall, the results demonstrate that in E. coli SitABCD represents a manganese and iron transporter that, in combination with other ion transport systems, may contribute to acquisition of iron and manganese, and resistance to oxidative stress.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
X. Yang ◽  
F. Tran ◽  
M. Klasse

ObjectivesRecent reports of an extremely heat resistant but non-pathogenic beef Escherichia coli strain, AW 1.7, raised concerns over the adequacy of cooking ground beef to 71°C in Canada. The objective of this study was to assess the adequacy of the current cooking recommendations for ground beef in relation to heat resistant E. coli.Materials and MethodsIn total, 8 potentially heat resistant E. coli strains (4 generic and 4 E. coli O157:H7) from beef along with E. coli AW1.7 were included in this study. Heat resistance of the strains was first evaluated by decimal reductions at 60°C (D60°C-value), the time required to have a log reduction of the bacterial population at 60°C. The more heat resistant strains of each group (E. coli 62 and 68, and E. coli O157 J3 and C37) were further assessed for their heat resistance when grown in Lennox Broth without salt (LB-NS), LB + 2% NaCl and Meat Juice (MJ). Then, the two most heat resistant E. coli O157 strains (J3 and C37) and E. coli AW 1.7 were each introduced to extra lean ground beef (100 g) in vacuum pouches for determination of their D-values at three temperatures, 54, 57, and 60°C, from which a z-value for each strain was derived. The thermal characteristics of all three strains were fed into a predictive model to determine the process lethality of cooking burgers to 71°C with resting for up to 5 min. Finally, inactivation of the most heat resistant E. coli strain AW1.7, assessed in this study and reported in the literature, in ground beef was validated by grilling burgers containing 6.20 ± 0.24 log CFU/g of the organism to 71°C without or with a resting of 3 or 5 min.ResultsThe D60°C-values for these strains varied from 1.3 to 9.0 min, with J3 and AW1.7 being the least and most heat resistant strains, respectively. The D60°C-values for E. coli 62 and 68 were similar and were not affected by growth medium, while the heat resistance of C37, J3 and AW1.7 varied with the growth medium. When heated in extra lean ground beef (100 g) in vacuum pouches, the mean D54°C, D57°C, and D60°C-values were 44.8, 18.6 and 2.9 min for C37, 13.8, 6.9 and 0.9 min for J3, and 40.5, 9.1 6.1 min for AW1.7. The derived z- and D71°C-values were, respectively, 5.0, 5.1 and 7.3°C; and 0.022, 0.008, and 0.156 min. Burger temperatures continued to rise after being removed from heat when the target temperature was reached, by up to 5°C, and resting of 1 min would result in a destruction of 133, 374, and 14 log C37, J3 and AW1.7, estimated from process lethality. When burgers inoculated with AW1.7 were cooked to 71°C, 14 of the 15 burgers yielded no E. coli, while the 15th had a reduction of 4.5 log. Additional resting of 3 or 5 min resulted in complete elimination of AW 1.7.ConclusionIt has been predicted that 2% of E. coli from beef may carry heat resistant genes. The findings in this study, along with the very low level of total E. coli expected in ground beef in Canada, suggest that cooking ground beef to 71°C should be adequate to ensure the safety of such products.


1982 ◽  
Vol 152 (3) ◽  
pp. 1138-1146
Author(s):  
L J Lee ◽  
J B Hansen ◽  
E K Jagusztyn-Krynicka ◽  
B M Chassy

Lactose metabolism in Lactobacillus casei 64H is associated with the presence of plasmid pLZ64. This plasmid determines both phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and beta-D-phosphogalactoside galactohydrolase. A shotgun clone bank of chimeric plasmids containing restriction enzyme digest fragments of pLZ64 DNA was constructed in Escherichia coli K-12. One clone contained the gene coding for beta-D-phosphogalactoside galactohydrolase on a 7.9-kilobase PstI fragment cloned into the vector pBR322 in E. coli strain chi 1849. The beta-D-phosphogalactoside galactohydrolase enzyme isolated from E. coli showed no difference from that isolated from L. casei, and specific activity of beta-D-phosphogalactoside galactohydrolase was stimulated 1.8-fold in E. coli by growth in media containing beta-galactosides. A restriction map of the recombinant plasmid was compiled, and with that information, a series of subclones was constructed. From an analysis of the proteins produced by minicells prepared from transformant E. coli cells containing each of the recombinant subclone plasmids, it was found that the gene for the 56-kilodalton beta-D-phosphogalactoside galactohydrolase was transcribed from an L. casei-derived promoter. The gene for a second protein product (43 kilodaltons) was transcribed in the opposite direction, presumably under the control of a promoter in pBR322. The relationship of this second product to the lactose metabolism genes of L. casei is at present unknown.


2010 ◽  
Vol 192 (21) ◽  
pp. 5822-5831 ◽  
Author(s):  
Lisa C. Crossman ◽  
Roy R. Chaudhuri ◽  
Scott A. Beatson ◽  
Timothy J. Wells ◽  
Mickael Desvaux ◽  
...  

ABSTRACT In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.


Sign in / Sign up

Export Citation Format

Share Document