scholarly journals Internal and external effects of dihydropyridines in the calcium channel of skeletal muscle.

1990 ◽  
Vol 95 (1) ◽  
pp. 1-27 ◽  
Author(s):  
H H Valdivia ◽  
R Coronado

The agonist effect of the dihydropyridine (DHP) (-)Bay K 8644 and the inhibitory effects of nine antagonist DHPs were studied at a constant membrane potential of 0 mV in Ca channels of skeletal muscle transverse tubules incorporated into planar lipid bilayers. Four phenylalkylamines (verapamil, D600, D575, and D890) and d-cis-diltiazem were also tested. In Ca channels activated by 1 microM Bay K 8644, the antagonists nifedipine, nitrendipine, PN200-110, nimodipine, and pure enantiomer antagonists (+)nimodipine, (-)nimodipine, (+)Bay K 8644, inhibited activity in the concentration range of 10 nM to 10 microM. Effective doses (ED50) were 2 to 10 times higher when HDPs were added to the internal side than when added to the external side. This sidedness arises from different structure-activity relationships for DHPs on both sides of the Ca channel since the ranking potency of DHPs is PN200-110 greater than (-)nimodipine greater than nifedipine approximately S207-180 on the external side while PN200-110 greater than S207-180 greater than nifedipine approximately (-)nimodipine on the internal side. A comparison of ED50's for inhibition of single channels by DHPs added to the external side and ED50's for displacement of [3H]PN200-110 bound to the DHP receptor, revealed a good quantitative agreement. However, internal ED50's of channels were consistently higher than radioligand binding affinities by up to two orders of magnitude. Evidently, Ca channels of skeletal muscle are functionally coupled to two DHP receptor sites on opposite sides of the membrane.

1988 ◽  
Vol 92 (1) ◽  
pp. 27-54 ◽  
Author(s):  
R L Rosenberg ◽  
P Hess ◽  
R W Tsien

Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.


1994 ◽  
Vol 5 (1) ◽  
pp. 97-103 ◽  
Author(s):  
I Bezprozvanny ◽  
S Bezprozvannaya ◽  
B E Ehrlich

Effects of the xanthine drug caffeine on inositol (1,4,5)-trisphosphate (InsP3)-gated calcium (Ca) channels from canine cerebellum were studied using single channels incorporated into planar lipid bilayers. Caffeine, used widely as an agonist of ryanodine receptors, inhibited the activity of InsP3-gated Ca channels in a noncooperative fashion with half-inhibition at 1.64 mM caffeine. The frequency of channel openings was decreased more than threefold after addition of 5 mM caffeine; there was only a small effect on mean open time of the channels, and the single channel conductance was unchanged. Increased InsP3 concentration overcame the inhibitory action of caffeine, but caffeine did not reduce specific [3H]InsP3 binding to the receptor. The inhibitory action of caffeine on InsP3 receptors suggests that the action of caffeine on the intracellular Ca pool must be interpreted with caution when both ryanodine receptors and InsP3 receptors are present in the cell.


1993 ◽  
Vol 264 (6) ◽  
pp. C1473-C1479 ◽  
Author(s):  
Y. Wang ◽  
C. Townsend ◽  
R. L. Rosenberg

We have studied the effects of activated G proteins (Gs alpha and Gi1 alpha), adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA), and okadaic acid on L-type Ca channels incorporated from porcine ventricular sarcolemma into planar lipid bilayers. Channel activity evoked by membrane depolarizations diminished to extremely low levels within 2 min of incorporation (channel "rundown"). When Gs alpha [activated with guanosine 5'-O-(3-thiotriphosphate)] was present in the intracellular chamber, the initial level of channel activity was increased and rundown was delayed, so that channel activity was sustained for longer times after incorporation. The effect was specific for activated Gs alpha; activated Gi1 alpha, heat-denatured, activated Gs alpha, and unactivated Gs alpha did not augment channel activity. Activated Gi1 alpha inhibited the stimulation of Ca channel activity by Gs alpha. Treatment of the sarcolemmal membranes with PKA and Mg-ATP also increased the initial channel open probability and delayed their rundown. Addition of intracellular Gs alpha to PKA-treated channels increased the initial level of activity above that seen with PKA or Gs alpha alone, suggesting different nonocclusive pathways for the channel stimulation. This was also supported by the observation that activated Gi1 alpha had no effect on PKA-treated channels. Okadaic acid (100 nM) increased the level of Ca channel activity, suggesting that dephosphorylation by endogenous phosphatases participated in the downregulation of the channels in cell-free membranes.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 88 (5) ◽  
pp. 573-588 ◽  
Author(s):  
J S Smith ◽  
R Coronado ◽  
G Meissner

A high-conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy-density skeletal muscle sarcoplasmic reticulum (SR) fractions into planar lipid bilayers of the Mueller-Rudin type. cis Ca2+ in the range of 2-950 microM increased open probability (Po) in single channel records without affecting open event lifetimes. Millimolar ATP was found to be as good as or better than Ca2+ in activation; however, both Ca2+ and ATP were required to fully activate the channel, i.e., to bring Po = 1. Exponential fits to open and closed single channel lifetimes suggested that the channel may exist in many distinct states. Two open and two closed states were identified when the channel was activated by either Ca2+ or ATP alone or by Ca2+ plus nucleotide. Mg2+ was found to permeate the SR Ca channel in a trans-to-cis direction such that iMg2+/iCa2+ = 0.40. cis Mg2+ was inhibitory and in single channel recordings produced an unresolvable flickering of Ca- and nucleotide-activated channels. At nanomolar cis Ca2+, 4 microM Mg2+ completely inhibited nucleotide-activated channels. In the presence of 2 microM cis Ca2+, the nucleotide-activated macroscopic Ba conductance was inhibited by cis Mg2+ with an IC50 equal to 1.5 mM.


1989 ◽  
Vol 257 (6) ◽  
pp. F1094-F1099 ◽  
Author(s):  
Y. M. Yu ◽  
F. Lermioglu ◽  
A. Hassid

The purpose of this study was to investigate the effects of depolarizing media and of Ca-channel activators and blockers on cytosolic free Ca in cultured rat mesangial cells. Membrane depolarizing media, containing 10–100 mM K+, dose dependently increased cytosolic Ca, and this effect was sustained and reversible. Nifedipine and lanthanum ion inhibited this increase, whereas verapamil was ineffective. A Ca-channel activator, BAY K 8644, dose dependently increased resting Ca levels, and nifedipine inhibited this effect. Moreover, the increase of Ca induced by maximally effective high K+ and BAY K 8644 was additive, suggesting differential mechanisms of action for the two channel activators. Nifedipine and verapamil decreased resting Ca levels by up to 35–40%. The results support the idea that mesangial cells have spontaneously active Ca channels that can be further activated by membrane depolarization or by the Ca-channel activator, BAY K 8644, and inhibited by the Ca-channel blockers, nifedipine or verapamil. Voltage-sensitive Ca channels in mesangial cells may play a role in the regulation of the glomerular filtration rate.


1996 ◽  
Vol 270 (6) ◽  
pp. C1675-C1686 ◽  
Author(s):  
J. I. Kourie ◽  
D. R. Laver ◽  
G. P. Ahern ◽  
A. F. Dulhunty

A Ca(2+)-activated Cl- channel is described in sarcoplasmic reticulum (SR) enriched vesicles of skeletal muscle incorporated into lipid bilayers. Small chloride (SCl) channels (n = 20) were rapidly and reversibly activated when cis- (cytoplasmic) [Ca2+] was increased above 10(-7) M, with trans-(luminal) [Ca2+] at either 10(-3) or 10(-7) M. The open probability of single channels increased from zero when cis-[Ca2+] was 10(-7) M to 0.61 +/- 0.12 when [Ca2+] was 10(-4) M. High- and low-conductance levels in single-channel activity were activated at different cis-[Ca2+]. Channel openings to the maximum conductance, 65-75 pS (250/50 mM Cl-, cis/ trans), were active when cis-[Ca2+] was increased above 5 x 10(-6) M. In contrast to the maximum conductance, channel openings to submaximal levels between 5 and 40 pS were activated at a lower cis-[Ca2+] and dominated channel activity between 5 x 10(-7) and 5 x 10(-6) M. Activation of SCl channels was Ca2+ specific and not reproduced by cytoplasmic Mg2+ concentrations of 10(-3) M. We suggest that the SCl channel arises in the SR membrane. The Ca2+ dependence of this channel implies that it is active at [Ca2+] achieved during muscle contraction.


1992 ◽  
Vol 263 (1) ◽  
pp. C69-C77 ◽  
Author(s):  
T. Kamishima ◽  
M. T. Nelson ◽  
J. B. Patlak

The role of voltage-dependent Ca channels in carbachol (CCh)-induced contraction of rat bronchus was investigated. Membrane depolarization and BAY K 8644, a Ca channel opener, significantly enhanced CCh-induced contractions. Nisoldipine, an organic Ca channel blocker, significantly inhibited the contractions. Cadmium, an inorganic Ca channel blocker, completely inhibited maintained contractions caused by CCh. These results suggested that the voltage-dependent Ca channels play an important role in sustained cholinergic contractions. This hypothesis was tested further by investigating the properties of single Ca channels of rat bronchus smooth muscle cells. We used 10 mM Ba as the charge carrier and BAY K 8644 to increase open times. The single-channel conductance was 16.8 pS. Steady-state open probability (NP(o)) increased steeply with membrane depolarization (e-fold for 4 mV). The primary effect of CCh (10 microM) on Ca channels was to shift the membrane potential at which NP(o) was half maximal from -34 to -43 mV without changing the steepness factor or maximal NP(o). This CCh-induced increase in NP(o) was not caused by depolarization, because the single-channel current amplitude was unchanged by CCh. We conclude that one of the mechanisms by which CCh opens Ca channels of rat bronchus smooth muscle is by shifting the activation curve in the hyperpolarized direction.


1979 ◽  
Vol 78 (1) ◽  
pp. 149-161 ◽  
Author(s):  
YOUKO SATOW ◽  
CHING KUNG

Transient inward currents across the membrane of P. tetraurelia are recorded upon step depolarizations with a voltage clamp in solutions where Ca2+ is the only added inorganic cation. It is shown that the current is normally carried by Ca2+ through the Ca-channels which activate and inactivate in time. The transient inward current is dependent on both the size of the depolarizing step and the holding level before the step. Maximum inward current (Imax) occurs when the membrane is first held at the resting level (- 30 mV), then stepped to 0 mV in a solution containing 0.91 mM-Ca2+. The Imax is smaller when the membrane is first held at depolarized level. This is due to the depolarization-sensitive inactivation of the Ca-channels. The Imax is also smaller when the membrane is first held at a hyperpolarized level. This may be explained by the activation of hyperpolarization-sensitive K-channels known to exist in the Paramecium membrane. I max increases with concentration of Ca2+ up to 0.9 mM. Further increase in the Ca2+ concentration does not affect Imax. This apparent saturation at 0.9 mM-Ca2+ may reflect a rate-limiting step of Ca2+ permeation. The increase in Ca2+ concentration shifts the V-Ipeak curve in the direction of less sensitivity. This result is best explained as the effect of bound Ca2+ on the surface potential of the Paramecium membrane. These results provide the first detailed description of the properties of the action current through the Ca-channel in Paramecium. They also define the conditions under which future voltage-clamp studies of wild-type and mutant membranes of P. tetraurelia should be performed, i.e. to maximize the resolution of the Ca-channel activity, the membrane should be held at or near the resting potential and there should be over 0.9 mM-Ca2+ in the test solutions. The behaviour of the Paramecium Ca-channel and small Imax in the presence of K+ are discussed.


1992 ◽  
Vol 262 (3) ◽  
pp. C708-C713 ◽  
Author(s):  
F. S. Scornik ◽  
L. Toro

Thromboxane A2 (TxA2) is a potent vasoconstrictor derived from the metabolism of arachidonic acid. Because potassium channels are involved in the contraction of vascular smooth muscle, their blockade could contribute to the TxA2-induced contraction. To test this possibility, we studied the effect of the TxA2 stable analogue U46619 on calcium-activated potassium (KCa) channels from coronary artery reconstituted into lipid bilayers. Addition of U46619 (50-150 nM) to the external but not to the internal side of the channel decreased the channel open probability (Po) between 15 and 80% of the control value. The inhibitory effect of U46619 affected both the open and closed states of the channel and could be reversed by internal calcium. Thromboxane B2, the inactive hydrolysis derivative of TxA2, did not affect channel activity. SQ 29548, a TxA2 receptor antagonist, was able to prevent the inhibition by U46619. Furthermore, SQ 29548 added after U46619 could restore channel activity to near control values. These results suggest that TxA2 could be a regulatory factor of KCa channels from coronary smooth muscle and that this regulation could be related to its action as a vasoconstrictor.


2001 ◽  
Vol 119 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Alexander Shtifman ◽  
Christopher W. Ward ◽  
Takeshi Yamamoto ◽  
Jianli Wang ◽  
Beth Olbinski ◽  
...  

DP4 is a 36-residue synthetic peptide that corresponds to the Leu2442-Pro2477 region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca2+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618–11625). We have investigated the effects of DP4 on local SR Ca2+ release events (Ca2+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca2+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca2+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca2+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca2+ release channel(s) generating the sparks. DP4 also increased [3H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca2+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca2+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg17 to Cys17 replacement (DP4mut), which corresponds to the Arg2458-to-Cys2458 mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg2+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg2+-free RyR(s), thus promoting channel opening and production of Ca2+ sparks.


Sign in / Sign up

Export Citation Format

Share Document