21 centimeter study of spiral galaxies in the Coma supercluster. II - Evidence for ongoing gas stripping in five cluster galaxies

1989 ◽  
Vol 346 ◽  
pp. 59 ◽  
Author(s):  
Giuseppe Gavazzi
2020 ◽  
Vol 500 (1) ◽  
pp. 1285-1312
Author(s):  
Callum Bellhouse ◽  
Sean L McGee ◽  
Rory Smith ◽  
Bianca M Poggianti ◽  
Yara L Jaffé ◽  
...  

ABSTRACT We present the first study of the effect of ram pressure ‘unwinding’ the spiral arms of cluster galaxies. We study 11 ram-pressure stripped galaxies from GASP (GAs Stripping Phenomena in galaxies) in which, in addition to more commonly observed ‘jellyfish’ features, dislodged material also appears to retain the original structure of the spiral arms. Gravitational influence from neighbours is ruled out and we compare the sample with a control group of undisturbed spiral galaxies and simulated stripped galaxies. We first confirm the unwinding nature, finding that the spiral arm pitch angle increases radially in 10 stripped galaxies and also simulated face-on and edge-on stripped galaxies. We find only younger stars in the unwound component, while older stars in the disc remain undisturbed. We compare the morphology and kinematics with simulated ram-pressure stripping galaxies, taking into account the estimated inclination with respect to the intracluster medium (ICM) and find that in edge-on stripping, unwinding can occur due to differential ram pressure caused by the disc rotation, causing stripped material to slow and ‘pile up’. In face-on cases, gas removed from the outer edges falls to higher orbits, appearing to ‘unwind’. The pattern is fairly short-lived (<0.5 Gyr) in the stripping process, occurring during first infall and eventually washed out by the ICM wind into the tail of the jellyfish galaxy. By comparing simulations with the observed sample, we find that a combination of face-on and edge-on ‘unwinding’ effects is likely to be occurring in our galaxies as they experience stripping with different inclinations with respect to the ICM.


1994 ◽  
Vol 03 (supp01) ◽  
pp. 93-100
Author(s):  
Christina M. Bird ◽  
John M. Dickey ◽  
E.E. Salpeter

We present new 21-cm observations of faint (15.7<mpg<16.5) spiral galaxies in the Abell cluster 2151. These results, when combined with the large body of velocities available in the literature for Hercules, permit us to study the dynamics throughout the cluster core, out to a projected radius of 1.8h−1 Mpc. We calculate the global dynamical mass of Hercules using 3 different but related methods: two versions of the virial theorem and the projected mass estimator. These masses lie in the range 3–6×1014 M⊙. We investigate the importance of subclustering in A2151 using the statistical test of Dressler and Shectman1 and the effects of the detected substructure on the dynamical mass determination. The clumpy distribution of galaxies is interpreted as a sign that the galaxies in the cluster have not reached dynamical equilibrium in the gravitational potential, which means that dynamical mass estimates are prone to significant errors. In spite of this uncertainty, we estimate that the virial theorem errors due to the presence of substructure are not larger than 30% in A2151. Finally, we use the 21-cm linewidths to estimate the minimum total mass in the cluster which is contained within the HI radii of the cluster galaxies is about 3×1014 M⊙. This number may be compared with the dynamical mass and used to separate the contribution of dark matter inside and outside the HI envelopes of galaxies, and the fraction of DM which cannot be associated with individual galaxies, about 90–95%.


2006 ◽  
Vol 2 (S235) ◽  
pp. 8-11 ◽  
Author(s):  
Alfonso Aragón-Salamanca

AbstractThe Tully-Fisher Relation (TFR) links two fundamental properties of disk galaxies: their luminosity and their rotation velocity (mass). The pioneering work of Vogt et al. in the 1990's showed that it is possible to study the TFR for spiral galaxies at considerable look-back-times, and use it as a powerful probe of their evolution. In recent years, several groups have studied the TFR for galaxies in different environments reaching redshifts beyond one. In this brief review I summarise the main results of some of these studies and their consequences for our understanding of the formation and evolution of disk galaxies. Particular emphasis is placed on the possible environment-driven differences in the behaviour of the TFR for field and cluster galaxies.


2018 ◽  
Vol 620 ◽  
pp. A20 ◽  
Author(s):  
E. Koulouridis ◽  
M. Ricci ◽  
P. Giles ◽  
C. Adami ◽  
M. Ramos-Ceja ◽  
...  

Context. We present the results of a study of the active galactic nucleus (AGN) density in a homogeneous and well-studied sample of 167 bona fide X-ray galaxy clusters (0.1 < z < 0.5) from the XXL Survey, from the cluster core to the outskirts (up to 6r500). The results can provide evidence of the physical mechanisms that drive AGN and galaxy evolution within clusters, testing the efficiency of ram pressure gas stripping and galaxy merging in dense environments. Aims. The XXL cluster sample mostly comprises poor and moderately rich structures (M = 1013–4 × 1014 M⊙), a poorly studied population that bridges the gap between optically selected groups and massive X-ray selected clusters. Our aim is to statistically study the demographics of cluster AGNs as a function of cluster mass and host galaxy position. Methods. To investigate the effect of the environment on AGN activity, we computed the fraction of spectroscopically confirmed X-ray AGNs (LX [0.5-10 keV] > 1042 erg cm−1) in bright cluster galaxies with Mi* − 2 < M < Mi* + 1, up to 6r500 radius. The corresponding field fraction was computed from 200 mock cluster catalogues with reshuffled positions within the XXL fields. To study the mass dependence and the evolution of the AGN population, we further divided the sample into low- and high-mass clusters (below and above 1014M⊙, respectively) and two redshift bins (0.1–0.28 and 0.28–0.5). Results. We detect a significant excess of X-ray AGNs, at the 95% confidence level, in low-mass clusters between 0.5r500 and 2r500, which drops to the field value within the cluster cores (r < 0.5r500). In contrast, high-mass clusters present a decreasing AGN fraction towards the cluster centres, in agreement with previous studies. The high AGN fraction in the outskirts is caused by low-luminosity AGNs, up to LX [0.5-10 keV] = 1043 erg cm−1. It can be explained by a higher galaxy merging rate in low-mass clusters, where velocity dispersions are not high enough to prevent galaxy interactions and merging. Ram pressure stripping is possible in the cores of all our clusters, but probably stronger in deeper gravitational potentials. Compared with previous studies of massive or high-redshift clusters, we conclude that the AGN fraction in cluster galaxies anti-correlates strongly with cluster mass. The AGN fraction also increases with redshift, but at the same rate with the respective fraction in field galaxies.


2019 ◽  
Vol 870 (2) ◽  
pp. 56 ◽  
Author(s):  
A. G. Noble ◽  
A. Muzzin ◽  
M. McDonald ◽  
G. Rudnick ◽  
J. Matharu ◽  
...  

2015 ◽  
Vol 448 (2) ◽  
pp. 1715-1728 ◽  
Author(s):  
Yara L. Jaffé ◽  
Rory Smith ◽  
Graeme N. Candlish ◽  
Bianca M. Poggianti ◽  
Yun-Kyeong Sheen ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. 28
Author(s):  
Andrea Franchetto ◽  
Matilde Mingozzi ◽  
Bianca M. Poggianti ◽  
Benedetta Vulcani ◽  
Cecilia Bacchini ◽  
...  

Abstract Making use of both MUSE observations of 85 galaxies from the survey GASP (GAs Stripping Phenomena in galaxies with MUSE) and a large sample from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory survey), we investigate the distribution of gas metallicity gradients as a function of stellar mass for local cluster and field galaxies. Overall, metallicity profiles steepen with increasing stellar mass up to 1010.3 M ⊙ and flatten out at higher masses. Combining the results from the metallicity profiles and the stellar mass surface density gradients, we propose that the observed steepening is a consequence of local metal enrichment due to in situ star formation during the inside-out formation of disk galaxies. The metallicity gradient−stellar mass relation is characterized by a rather large scatter, especially for 109.8 < M ⋆/M ⊙ < 1010.5, and we demonstrate that metallicity gradients anti-correlate with the galaxy gas fraction. Focusing on the galaxy environment, at any given stellar mass, cluster galaxies have systematically flatter metallicity profiles than their field counterparts. Many subpopulations coexist in clusters: galaxies with shallower metallicity profiles appear to have fallen into their present host halo sooner and have experienced the environmental effects for a longer time than cluster galaxies with steeper metallicity profiles. Recent galaxy infallers, like galaxies currently undergoing ram pressure stripping, show metallicity gradients more similar to those of field galaxies, suggesting they have not felt the effect of the cluster yet.


2019 ◽  
Vol 490 (1) ◽  
pp. 455-466
Author(s):  
K A Pimbblet ◽  
J P Crossett ◽  
A Fraser-McKelvie

ABSTRACT The ratio of calcium ii H plus Hϵ to calcium ii K inverts as a galaxy stellar population moves from being dominated by older stars to possessing more A and B class stars. This ratio – the H:K ratio – can serve as an indicator of stellar populations younger than 200 Myr. In this work, we provide a new method to determine H:K, and apply it to spectra taken of cluster galaxies in Abell 3888. Although H:K is on average systematically lower for the cluster than for a wider field sample, we show that H:K does not have a simple relationship with other indices such as the equivalent widths of Hδ and [O ii] beyond having a high value for strong [O ii] emission. Moreover, strongly inverted galaxies with H:K > 1.1 have no preferred location within the cluster and are only slightly lower in their velocity dispersions around the cluster compared to strongly emitting [O ii] galaxies. Our results indicate that selecting galaxies on H:K inversion results in a heterogeneous sample formed via a mixture of pathways that likely includes, but may not be limited to, merging spiral galaxies, and quiescent galaxies accreting lower mass, gas-rich companions. In concert with other selection criteria, H:K can provide a means to select a more ‘pure’ passive sample or to aid in the selection of highly star-forming galaxies, especially where other spectral line indicators such as H α may not have been observed.


2019 ◽  
Vol 488 (3) ◽  
pp. 4169-4180 ◽  
Author(s):  
Sree Oh ◽  
Keunho Kim ◽  
Joon Hyeop Lee ◽  
Minjin Kim ◽  
Yun-Kyeong Sheen ◽  
...  

ABSTRACT We examine the ultraviolet and optical colours of 906 cluster galaxies from the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). The sample has been divided into two categories, morphologically disturbed and undisturbed galaxies, based on the visual signatures related to recent mergers. We find that galaxies with signatures of recent mergers show significantly bluer colours than undisturbed galaxies. Disturbed galaxies populate more on the cluster outskirts, suggesting recent accretion into the cluster environment, which implies that disturbed galaxies can be less influenced by the environmental quenching process and remain blue. However, we still detect bluer colours of disturbed galaxies in all locations (cluster core and outskirts) for the fixed morphology, which is difficult to understand just considering the difference in time since infall into a cluster. Moreover, blue disturbed galaxies show features seemingly related to recent star formation. Therefore, we suspect that mergers make disturbed galaxies keep their blue colour longer than undisturbed galaxies under the effect of the environmental quenching through either merger-induced star formation or central gas concentration which is less vulnerable for gas stripping.


1999 ◽  
Vol 186 ◽  
pp. 387-392 ◽  
Author(s):  
Jeffrey Kenney ◽  
Rebecca Koopmann

Many types of galaxy interactions have been posited to occur in clusters, although it remains unclear which processes actually occur, and which ones might help explain the tendency for early type galaxies to inhabit high density environments, or cause the rapid evolution of cluster galaxies (e.g., Dressler et al. 1997). With these questions in mind, we have been conducting an environmental inventory of galaxies in the Virgo Cluster. Our approach is to combine surveys of spirals and S0s with detailed studies of the most interesting and peculiar galaxies. In this paper, we describe two main points. 1.) There is a population of spiral galaxies in the Virgo cluster with the small central light concentrations (bulge-to-disk ratios, or B/D's) characteristic of isolated Sb and Sc galaxies, but global star formation rates lower than those of isolated spirals of any Hubble class (Sa-Sc). These Virgo galaxies are generally classified as “early type” (e.g. Sa), and thus contribute to the morphology-density relationship. 2.) There are several types of environmental interactions occurring in Virgo, including low velocity tidal interactions and mergers, high velocity tidal interactions and collisions, HI accretion, and ICM-ISM stripping. We discuss examples of some of these interactions.


Sign in / Sign up

Export Citation Format

Share Document