Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics

2000 ◽  
Vol 543 (1) ◽  
pp. L5-L8 ◽  
Author(s):  
Karl Gebhardt ◽  
John Kormendy ◽  
Luis C. Ho ◽  
Ralf Bender ◽  
Gary Bower ◽  
...  

2007 ◽  
Vol 670 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Christopher A. Onken ◽  
Monica Valluri ◽  
Bradley M. Peterson ◽  
Richard W. Pogge ◽  
Misty C. Bentz ◽  
...  


2016 ◽  
Vol 12 (S324) ◽  
pp. 172-175
Author(s):  
Amri Wandel ◽  
Mathew Malkan

AbstractWe analyze the fluctuations in the X-ray flux of 20 AGN (mainly Seyfert 1 galaxies) monitored by RXTE and XMM-Newton with a sampling frequency ranging from hours to years, using structure function (SF) analysis. We derive SFs over four orders of magnitude in the time domain (0.03-300 days). Most objects show a characteristic time scale, where the SF flattens or changes slope. For 10 objects with published power-spectral density (PSD) the break time scales in the SF and PSD are similar and show a good correlation. We also find a significant correlation between the SF timescale and the mass of the central black hole, determined for most objects by reverberation mapping.



2006 ◽  
Vol 2 (S238) ◽  
pp. 83-86
Author(s):  
Deborah Dultzin-Hacyan ◽  
Paola Marziani ◽  
C. Alenka Negrete ◽  
Jack W. Sulentic

AbstractAccurate measurements of emission line properties are crucial to understand the physics of the broad line region in quasars. This region consists of warm gas that is closest to the quasar central engine and has not been spatially resolved for almost all sources. We present here an analysis of optical and IR data for a large sample of quasars, covering the Hi Hβ spectral region in the redshift range 0 ≲ z ≲ 2.5. Spectra were interpreted within the framework of the the so-called “eigenvector 1” parameter space, which can be viewed as a tentative H-R diagram for quasars. We stress the lack of spectral evolution in the low ionization lines of quasars, with prominent Fe ii emission also at z ≳ 2. We also show how selection effects influence the ability to find quasars radiating at low Eddington ratio in flux-limited surveys. The quasar similarity at different redshift is probably due to the absence of super-Eddington radiators (at least within the caveats of black hole mass and Eddington ratio determination discussed in this paper) as well as to the limited Eddington ratio range within which quasars seem to radiate.



Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Aditi Agarwal ◽  
Priyanka Rani ◽  
Raj Prince ◽  
C. S. Stalin ◽  
G. C. Anupama ◽  
...  

We present here the detection of a possible quasi-periodic oscillation (QPO) signal in the X-ray light curve of the active galactic nucleus 3C 120, a broad line radio galaxy at z = 0.033. The hint of a QPO at the 3σ level at 7.1 × 10−6 Hz (∼1.65 days) was detected based on the analysis of X-ray data acquired in the 3–79 keV band by the Nuclear Spectroscopic Telescope Array (NuSTAR). The data, when processed separately in the soft (3–10 keV), hard (10–79 keV) and the total (3–79 keV) bands using four different techniques, namely discrete correlation function, Lomb Scargle periodogram, structure–function, and power spectral density indicated the presence of a QPO. 3C 120 very well fits in the negative correlation in the frequency of the QPO versus the black hole mass (FQPO versus MBH) diagram known for stellar-mass and supermassive black hole sources. Considering the observed signs of QPO to represent the innermost stable orbit of the accretion disk, we found a black hole mass of 1.9×109 M⊙ for a Kerr black hole and 3.04×108 M⊙ for a Schwarzschild black hole. This deduced black hole mass from QPO measurement is a few times larger than the black hole mass obtained from reverberation mapping observations.



2016 ◽  
Vol 12 (S324) ◽  
pp. 219-222
Author(s):  
Shai Kaspi

AbstractAbout 100 AGNs have their black hole mass measured directly using the reverberation mapping technique over the past few decades. By now we have high enough numbers to explore unique subsamples within these objects and to study phenomena across variety of AGNs. I will review recent reverberation mapping studies which focus on high-redshift high-luminosity AGNs and on AGNs with super-Eddington accreting massive black holes. These studies enable to investigate the BLR size, mass, and luminosity relations in different subsamples of AGNs and to check whether there are differences in these relations in different types of AGNs. In particular I will discuss the following questions: Is the BLR size - luminosity relation the same over the whole AGNs luminosity range? Are there different relations for different types of AGNs? What are these studies teaching us about theory of accretion into black holes in AGNs?





2021 ◽  
Vol 920 (1) ◽  
pp. 9
Author(s):  
Sha-Sha Li ◽  
Sen Yang ◽  
Zi-Xu Yang ◽  
Yong-Jie Chen ◽  
Yu-Yang Songsheng ◽  
...  


2009 ◽  
Vol 5 (S267) ◽  
pp. 198-198 ◽  
Author(s):  
Ismael Botti ◽  
Paulina Lira ◽  
Hagai Netzer ◽  
Shai Kaspi

AbstractWe present a monitoring campaign on high-luminosity quasars which will extend the existing reverberation mapping results by two orders of magnitude in luminosity, probing the broad-line region size and black hole mass of luminous AGN at redshift ~ 2 – 3.



2019 ◽  
Vol 882 (1) ◽  
pp. 4 ◽  
Author(s):  
Shu Wang ◽  
Yue Shen ◽  
Linhua Jiang ◽  
Keith Horne ◽  
W. N. Brandt ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document