scholarly journals The First Hour of Extragalactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster

2001 ◽  
Vol 121 (5) ◽  
pp. 2331-2357 ◽  
Author(s):  
Francisco J. Castander ◽  
Robert C. Nichol ◽  
Aronne Merrelli ◽  
Scott Burles ◽  
Adrian Pope ◽  
...  

2007 ◽  
Vol 671 (2) ◽  
pp. 1466-1470 ◽  
Author(s):  
Jeffrey M. Kubo ◽  
Albert Stebbins ◽  
James Annis ◽  
Ian P. Dell’Antonio ◽  
Huan Lin ◽  
...  


2020 ◽  
Vol 634 ◽  
pp. A30 ◽  
Author(s):  
Nicola Malavasi ◽  
Nabila Aghanim ◽  
Hideki Tanimura ◽  
Victor Bonjean ◽  
Marian Douspis

The Cosmic Web is a complex network of filaments, walls, and voids that represent the largest structures in the Universe. In this network, which is the direct result of structure formation, galaxy clusters occupy central positions that form the nodes and these are connected by filaments. In this work, we investigate the position in the Cosmic Web of one of the most well-known and best-studied clusters of galaxies, the Coma cluster. We make use of the Sloan Digital Sky Survey Data Release 7 Main Galaxy Sample and of the Discrete Persistent Structure Extractor to detect large-scale filaments around the Coma cluster and analyse the properties of the Cosmic Web. We study the network of filaments around Coma in a region of 75 Mpc in radius. We find that the Coma cluster has a median connectivity of 2.5, in agreement with measurements from clusters of similar mass in the literature as well as with what is expected from numerical simulations. Coma is indeed connected to three secure filaments which connect it to Abell 1367 and to several other clusters in the field. The location of these filaments in the vicinity of Coma is consistent with features detected in the X-ray, as well as the likely direction of infall of galaxies, such as for example NGC 4839. The overall picture that emerges of the Coma cluster is that of a highly connected structure occupying a central position as a dense node of the Cosmic Web. We also find a tentative detection, at 2.1σ significance, of the filaments in the SZ signal.



2020 ◽  
Vol 499 (4) ◽  
pp. 5607-5622
Author(s):  
M Martínez-Marín ◽  
R Demarco ◽  
G Cabrera-Vives ◽  
P Cerulo ◽  
N W C Leigh ◽  
...  

ABSTRACT We propose a phylogenetic approach (PA) as a novel and robust tool to detect galaxy populations (GPs) based on their chemical composition. The branches of the tree are interpreted as different GPs and the length between nodes as the internal chemical variation along a branch. We apply the PA using 30 abundance indices from the Sloan Digital Sky Survey to 475 galaxies in the Coma Cluster and 438 galaxies in the field. We find that a dense environment, such as Coma, shows several GPs, which indicates that the environment is promoting galaxy evolution. Each population shares common properties that can be identified in colour–magnitude space, in addition to minor structures inside the red sequence. The field is more homogeneous, presenting one main GP. We also apply a principal component analysis (PCA) to both samples, and find that the PCA does not have the same power in identifying GPs.



2019 ◽  
Vol 491 (4) ◽  
pp. 5317-5329 ◽  
Author(s):  
Raúl Infante-Sainz ◽  
Ignacio Trujillo ◽  
Javier Román

ABSTRACT A robust and extended characterization of the point spread function (PSF) is crucial to extract the photometric information produced by deep imaging surveys. Here, we present the extended PSFs of the Sloan Digital Sky Survey (SDSS), one of the most productive astronomical surveys of all time. By stacking ∼1000 images of individual stars with different brightness, we obtain the bidimensional SDSS PSFs extending over 8 arcmin in radius for all the SDSS filters (u, g, r, i, z). This new characterization of the SDSS PSFs is near a factor of 10 larger in extension than previous PSFs characterizations of the same survey. We found asymmetries in the shape of the PSFs caused by the drift scanning observing mode. The flux of the PSFs is larger along the drift scanning direction. Finally, we illustrate with an example how the PSF models can be used to remove the scattered light field produced by the brightest stars in the central region of the Coma cluster field. This particular example shows the huge importance of PSFs in the study of the low-surface brightness Universe, especially with the upcoming of ultradeep surveys, such as the Large Synoptic Survey Telescope (LSST). Following a reproducible science philosophy, we make all the PSF models and the scripts used to do the analysis of this paper publicly available (snapshot v0.4-0-gd966ad0).



2014 ◽  
Vol 4 (3) ◽  
pp. 655-661
Author(s):  
Waleed Elsanhoury

Using Sloan Digital Sky Survey SDSS catalog, some intrinsic characteristics of Quasars (10,000 points) are developed of these are the strong correlations between redshifts and other parameters, e.g. combined magnitude, luminosity, and absolute magnitude .Moreover ,the Karlsson peak of our sample is also computed.



2021 ◽  
Vol 504 (1) ◽  
pp. 65-88
Author(s):  
Abhijeet Anand ◽  
Dylan Nelson ◽  
Guinevere Kauffmann

ABSTRACT In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive S/N criteria. We process ∼ one million quasars in the latest Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and compile a large sample of ∼ 160 000 Mg ii absorbers, together with ∼ 70 000 Fe ii systems, in the redshift range 0.35 < zabs < 2.3. Combining these with the SDSS DR16 spectroscopy of ∼1.1 million luminous red galaxies (LRGs) and ∼200 000 emission line galaxies (ELGs), we investigate the nature of cold gas absorption at 0.5 < z < 1. These large samples allow us to characterize the scale dependence of Mg ii with greater accuracy than in previous work. We find that there is a strong enhancement of Mg ii absorption within ∼50 kpc of ELGs, and the covering fraction within 0.5rvir of ELGs is 2–5 times higher than for LRGs. Beyond 50 kpc, there is a sharp decline in Mg ii for both kinds of galaxies, indicating a transition to the regime where the CGM is tightly linked with the dark matter halo. The Mg ii-covering fraction correlates strongly with stellar mass for LRGs, but weakly for ELGs, where covering fractions increase with star formation rate. Our analysis implies that cool circumgalactic gas has a different physical origin for star-forming versus quiescent galaxies.



2019 ◽  
Vol 15 (S359) ◽  
pp. 441-443
Author(s):  
F. S. Lohmann ◽  
A. Schnorr-Müller ◽  
M. Trevisan ◽  
R. Riffel ◽  
N. Mallmann ◽  
...  

AbstractObservations at high redshift reveal that a population of massive, quiescent galaxies (called red nuggets) already existed 10 Gyr ago. These objects undergo a significant size evolution over time, likely due to minor mergers. In this work we present an analysis of local massive compact galaxies to assess if their properties are consistent with what is expected for unevolved red nuggets (relic galaxies). Using integral field spectroscopy (IFS) data from the MaNGA survey from the Sloan Digital Sky Survey (SDSS), we characterized the kinematics and properties of stellar populations of massive compact galaxies, and find that these objects exhibit, on average, a higher rotational support than a control sample of average sized early-type galaxies. This is in agreement with a scenario in which these objects have a quiet accretion history, rendering them candidates for relic galaxies.



2020 ◽  
Vol 500 (4) ◽  
pp. 4469-4490 ◽  
Author(s):  
James Trussler ◽  
Roberto Maiolino ◽  
Claudia Maraston ◽  
Yingjie Peng ◽  
Daniel Thomas ◽  
...  

ABSTRACT We investigate the environmental dependence of the stellar populations of galaxies in Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Echoing earlier works, we find that satellites are both more metal-rich (<0.1 dex) and older (<2 Gyr) than centrals of the same stellar mass. However, after separating star-forming, green valley, and passive galaxies, we find that the true environmental dependence of both stellar metallicity (<0.03 dex) and age (<0.5 Gyr) is in fact much weaker. We show that the strong environmental effects found when galaxies are not differentiated result from a combination of selection effects brought about by the environmental dependence of the quenched fraction of galaxies, and thus we strongly advocate for the separation of star-forming, green valley, and passive galaxies when the environmental dependence of galaxy properties are investigated. We also study further environmental trends separately for both central and satellite galaxies. We find that star-forming galaxies show no environmental effects, neither for centrals nor for satellites. In contrast, the stellar metallicities of passive and green valley satellites increase weakly (<0.05 and <0.08 dex, respectively) with increasing halo mass, increasing local overdensity and decreasing projected distance from their central; this effect is interpreted in terms of moderate environmental starvation (‘strangulation’) contributing to the quenching of satellite galaxies. Finally, we find a unique feature in the stellar mass–stellar metallicity relation for passive centrals, where galaxies in more massive haloes have larger stellar mass (∼0.1 dex) at constant stellar metallicity; this effect is interpreted in terms of dry merging of passive central galaxies and/or progenitor bias.



2012 ◽  
Vol 758 (1) ◽  
pp. L23 ◽  
Author(s):  
Sarah R. Loebman ◽  
Željko Ivezić ◽  
Thomas R. Quinn ◽  
Fabio Governato ◽  
Alyson M. Brooks ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document