scholarly journals The Inverse Compton Emission Spectra in the Very Early Afterglows of Gamma‐Ray Bursts

2001 ◽  
Vol 556 (2) ◽  
pp. 1010-1016 ◽  
Author(s):  
X. Y. Wang ◽  
Z. G. Dai ◽  
T. Lu
2008 ◽  
Vol 17 (09) ◽  
pp. 1319-1332
Author(s):  
PETER MÉSZÁROS

Gamma-ray bursts are capable of accelerating cosmic rays up to GZK energies Ep ~ 1020 eV, which can lead to a flux at Earth comparable to that observed by large EAS arrays such as Auger. The semi-relativistic outflows inferred in GRB-related hypernovae are also likely sources of somewhat lower energy cosmic rays. Leptonic processes, such as synchrotron and inverse Compton, as well as hadronic processes, can lead to GeV-TeV gamma-rays measurable by GLAST, AGILE, or ACTs, providing useful probes of the burst physics and model parameters. Photo-meson interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which will be probed with forthcoming experiments such as IceCube, ANITA and KM3NeT. This would provide information about the fundamental interaction physics, the acceleration mechanism, the nature of the sources and their environment.


2021 ◽  
Vol 920 (1) ◽  
pp. 55
Author(s):  
B. Theodore Zhang ◽  
Kohta Murase ◽  
Péter Veres ◽  
Péter Mészáros

2012 ◽  
Vol 12 ◽  
pp. 385-389
Author(s):  
B. PATRICELLI ◽  
M.G. BERNARDINI ◽  
C.L. BIANCO ◽  
L. CAITO ◽  
G. DE BARROS ◽  
...  

The analysis of various Gamma Ray Bursts (GRBs) characterized by an isotropic energy Eiso ≲ 1053 ergs within the fireshell model has shown how that the observed N(E) spectrum of their prompt emission can be reproduced in a satisfactory way by assuming a thermal spectrum in the comoving frame of the fireshell. Nevertheless, from the study of higher energetic bursts (Eiso ≳ 1054 ergs ) such as, for example, GRB 080319B, some discrepancies between the numerical simulations and the observational data have been observed. We investigate a different spectrum of photons in the comoving frame of the fireshell in order to better reproduce the spectral properties of GRB prompt emission within the fireshell model. We introduce a phenomenologically modified comoving thermal spectrum: a spectrum characterized by a different asymptotic low energy slope with respect to the thermal one. We test this spectrum by comparing the numerical simulations with the observed prompt emission spectra of various GRBs; we present, as an exaple, the case of GRB 080319B.


2009 ◽  
Vol 708 (2) ◽  
pp. 1357-1365 ◽  
Author(s):  
X. H. Zhao ◽  
Z. G. Dai ◽  
T. Liu ◽  
J. M. Bai ◽  
Z. Y. Peng

2021 ◽  
Vol 908 (2) ◽  
pp. L36 ◽  
Author(s):  
B. Theodore Zhang ◽  
Kohta Murase ◽  
Chengchao Yuan ◽  
Shigeo S. Kimura ◽  
Peter Mészáros

2011 ◽  
Vol 20 (10) ◽  
pp. 2023-2027 ◽  
Author(s):  
XIANG-YU WANG ◽  
HAO-NING HE ◽  
ZHUO LI

Prompt and extended high-energy (> 100 MeV) gamma-ray emission has been observed from more than ten gamma-ray bursts by Fermi Large Area Telescope (LAT). Such emission is likely to be produced by synchrotron radiation of electrons accelerated in internal or external shocks. We show that IC scattering of these electrons with synchrotron photons are typically in the Klein–Nishina (KN) regime. For the prompt emission, the KN effect can suppress the IC component and as a result, one single component is seen in some strong bursts. The KN inverse-Compton cooling may also affect the low-energy electron number distribution and hence result in a hard low-energy synchrotron photon spectrum. During the afterglow, KN effect makes the Compton-Y parameter generally less than 1 in the first seconds for a wide range of parameter space. Furthermore, we suggest that the KN effect can explain the somewhat faster-than-expected decay of the early-time high-energy emission observed in GRB090510 and GRB090902B.


Sign in / Sign up

Export Citation Format

Share Document