circular frequency
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Rajesh Yadav ◽  
Aslesha Bodavula

Numerical simulations are conducted to investigate the effect of triangular groove on the dynamic stall characteristics of a NACA 0012 airfoil at a Reynolds number of 135,000. The right-angled triangular grooves are placed at either 10%, 25%, or 50% chord locations on the suction and have depths of 0.025c and 0.05c, measured normal to the surface of the airfoil. The solutions that are second order accurate in time and space are obtained using pressure-based finite volume solver and the 4-equation transition SST turbulence model viz. γ- Re θt is used to predict transition and viscous stresses accurately. The airfoil is in harmonic pitch motion about its quarter-chord with a maximum circular frequency of 18.67 rad/s. The results suggest that the presence of a groove, except for the deeper grove at 0.5c, quickens the dynamic stall, but with smaller rise in C l,max and a less severe fall in lift at the stall. The mean C l value during the downstroke is improved by up to 8% for the deeper groove at 0.25c, reducing the hysteresis in lift significantly. The grooves at 0.1c, 0.25c, and 0.5c also reduce the drag by 4%, 7%, and 9% during a complete cycle, with subsequent improvements of 54%, 69%, and 63% in the l/d ratio. The current finding can be thus used to enhance the performance of flapping wing MAVs, helicopter rotors, and wind turbine blades as these applications encounter the dynamic stall phenomena frequently.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Changju Zhu ◽  
Maozhong Song ◽  
Xiaoyu Dang ◽  
Qiuming Zhu

The multitarget position-sensitivity security transmission scheme with orbital angular momentum (OAM) directional modulation (DM) waveform using the uniform circular frequency diverse array (FDA) is proposed. The transmitter employs FDA to generate dual-mode range-dependent OAM beam pattern, and the direction information of OAM beam is modulated into the signal. According to the modulation method, orthogonal carrier frequency can be designed to realize multitarget position-dependent OAM pattern. In the undesired position, the intensity pattern and the phase front of the radio beam vary randomly with the digital transmission sequence. Because modulation waveform is position-dependent, the technique offers security, as the signal can be purposely distorted in other positions. The composite dual-mode OAM signal makes it more difficult for eavesdroppers to demodulate correct messages. The receiver with a single antenna employs the phase compensation and helical phase factor to restore the correct digital signal in the desired position. Numerical results show that multitarget position-sensitivity OAM-DM technology based on FDA offers the security transmission scheme.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012029
Author(s):  
V I Melikhov ◽  
O I Melikhov ◽  
D V Finoshkina

Abstract A linear analysis of the stability of the three-layer stratified hydrodynamic system “water (top) – steam – melt (bottom)” has been performed. Kinematic and dynamic conditions on the “water – steam” and “steam – melt” interfaces are formulated, and on their basis a dispersion equation is obtained that relates the circular frequency of perturbations to the wavenumber. Analysis of this equation made it possible to determine the region of instability of this system and to find the wavenumber of the most fastly growing harmonics. The results obtained were used to estimate the size of bubbles formed at the interface between steam and water due to the development of the Rayleigh-Taylor instability. The obtained theoretical results are consistent with experimental observations in such systems. The heights of the melt splashes into water due to the collapse of the formed steam bubble were estimated. The obtained estimations demonstrate possibilities of the formation of melt-water mixture region during the spreading of the melt under a water layer, in which a strong steam explosion can occur.


Author(s):  
I. Blekhman ◽  
L. I. Blekhman ◽  
L. A. Vaisberg ◽  
V. B. Vasilkov

We consider vibration devices that consist of softly vibration-isolated rigid bodies subjected to vibrations transmitted by means of inertial vibration exciters (unbalanced rotors) driven into rotation by electric motors. Typically, when designing such devices, it is assumed that the rotors rotate uniformly with a certain circular frequency and the body performs small harmonic oscillations with the same frequency. The present work, using a second-order approximation of their nonlinear coupled differential equations, shows that the rotor and the oscillating body keep exchanging energy. At the same time, the angular velocity of the rotor oscillates with the working frequency as well as with its multiple frequencies during each revolution. As a result, the acceleration of the oscillating body also acquires harmonics with multiple frequencies. This may cause both unwanted and beneficial resonance phenomena. We obtain formulae describing the magnitudes of these ripples. We show that the magnitude of oscillations of the angular frequency can also be estimated using energy considerations. Such estimates are provided for the three most common schemes of dynamic devices. Available experimental data confirm the main conclusions of the theory. We discuss both the harmful effects of these phenomena as well as their possible applications. The latter include design of bi-harmonic vibration exciters and exciters based on vibrational resonance. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 2)’.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Baljeet Singh

Abstract This paper investigates the propagation of thermoelastic waves in a homogeneous, linear, and isotropic porous solid. For physical and mathematical simplicity, one-dimensional wave propagation in a porous solid rod is considered to explain the concept of heat transfer caused by motion. The solutions of governing equations show that the transfer of heat in a porous rod is not only due to the conduction but also produced by the local particle displacement phenomenon. It is observed that the time-averaged transfer of heat depends on the circular frequency, porosity, thermal conductivity, thermal relaxation, specific heat, and other material coefficients.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1617
Author(s):  
Polidor Bratu

The dynamic model of the system of bodies with elastic connections substantiates the conceptual basis for evaluating the technological vibrations of the compactor roller as well as of the parameters of the vibrations transmitted from the vibration source to the remainder of the equipment components. In essence, the multi-body model with linear elastic connections consists of a body in vertical translational motion for vibrating roller with mass m1, a body with composed motion of vertical translation and rotation around the transverse axis passing through its weight center for the chassis of the car with mass m and the moment of mass inertia J and a body of mass m’ representing the traction tire-wheel system located on the opposite side of the vibrating roller. The study analyzes the stationary motion of the system of bodies that are in vibrational regime as a result of the harmonic excitation of the m mass body, with the force F(t)= m0rω2sinωt, generated by the inertial vibrator located inside the vibrating roller. The vibrator is characterized by the total unbalanced m0 mass in rotational motion at distance r from the axis of rotation and the angular velocity or circular frequency ω.


2020 ◽  
Vol 22 (4) ◽  
pp. 1329-1336
Author(s):  
Alla V. Ilyashenko ◽  
Sergey V. Kuznetsov

AbstractThe exact solutions of the linear Pochhammer – Chree equation for propagating harmonic waves in a cylindrical rod, are analyzed. Spectral analysis of the matrix dispersion equation for longitudinal axially symmetric modes is performed. Analytical expressions for displacement fields are obtained. Variation of wave polarization on the free surface due to variation of Poisson’s ratio and circular frequency is analyzed. It is observed that at the phase speed coinciding with the bulk shear wave speed all the components of the displacement field vanish, meaning that no longitudinal axisymmetric Pochhammer – Chree wave can propagate at this phase speed.


Sign in / Sign up

Export Citation Format

Share Document