scholarly journals The Stellar Cusp around the Supermassive Black Hole in the Galactic Center

2003 ◽  
Vol 594 (2) ◽  
pp. 812-832 ◽  
Author(s):  
R. Genzel ◽  
R. Schodel ◽  
T. Ott ◽  
F. Eisenhauer ◽  
R. Hofmann ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


2017 ◽  
Vol 847 (1) ◽  
pp. 80 ◽  
Author(s):  
G. Witzel ◽  
B. N. Sitarski ◽  
A. M. Ghez ◽  
M. R. Morris ◽  
A. Hees ◽  
...  

2019 ◽  
Vol 875 (1) ◽  
pp. 44 ◽  
Author(s):  
Zhenlin Zhu ◽  
Zhiyuan Li ◽  
Mark R. Morris ◽  
Shuo Zhang ◽  
Siming Liu

Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 664-668 ◽  
Author(s):  
Tuan Do ◽  
Aurelien Hees ◽  
Andrea Ghez ◽  
Gregory D. Martinez ◽  
Devin S. Chu ◽  
...  

The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ.


2017 ◽  
Vol 845 (1) ◽  
pp. 22 ◽  
Author(s):  
M. Parsa ◽  
A. Eckart ◽  
B. Shahzamanian ◽  
V. Karas ◽  
M. Zajaček ◽  
...  

2015 ◽  
Vol 24 (13) ◽  
pp. 1545005 ◽  
Author(s):  
K. M. Belotsky ◽  
A. A. Kirillov ◽  
S. G. Rubin

Here, we briefly discuss the possibility to solve simultaneously with primordial black holes (PBHs) the problems of dark matter (DM), reionization of the universe, origin of positron line from Galactic center and supermassive black hole (BH) in it. Discussed scenario can naturally lead to a multiple-peak broad-mass-range distribution of PBHs in mass, which is necessary for simultaneous solution of the problems.


2013 ◽  
Vol 9 (S303) ◽  
pp. 303-306 ◽  
Author(s):  
R. V. Shcherbakov

AbstractAn object called G2 was recently discovered moving towards the supermassive black hole in the Galactic center. G2 emits infrared (IR) lines and continuum, which allows constraining its properties. The question is still unresolved whether G2 has a central windy star or it is a coreless cloud. Assuming the object is a cloud originating near the apocenter I perform line/continuum IR diagnostics, revisit estimates of non-thermal emission from pericenter passage, and speculate about future observational prospects. This work is partially reported in Shcherbakov (2013) and partially consists of new ideas discussed at the conference.


2013 ◽  
Vol 9 (S303) ◽  
pp. 150-152 ◽  
Author(s):  
N. Sabha ◽  
M. Zamaninasab ◽  
A. Eckart ◽  
L. Moser

AbstractWe find a convex-like feature at a distance of 0.68 pc (17″) from the position of the supermassive black hole, Sgr A*, at the center of the nuclear stellar cluster. This feature resembles a stellar bow shock with a symmetry axis pointing to the center. We discuss the possible nature of the feature and the implications of its alignment with other dusty comet-like objects inside the central parsec.


2012 ◽  
Vol 8 (S290) ◽  
pp. 199-200 ◽  
Author(s):  
Bozena Czerny ◽  
Vladimír Karas ◽  
Devaky Kunneriath ◽  
Tapas K. Das

AbstractThe question of the origin of the gas supplying the accretion process is pertinent especially in the context of enhanced activity of Galactic Center during the past few hundred years, seen now as echo from the surrounding molecular clouds, and the currently observed new cloud approaching Sgr A*. We discuss the so-called Galactic Center mini-spiral as a possible source of material feeding the supermassive black hole on a 0.1 parsec scale. The collisions between individual clumps reduce their angular momentum. and set some of the clumps on a plunging trajectory.We conclude that the amount of material contained in the mini-spiral is sufficient to sustain the luminosity of Sgr A* at the required level. The accretion episodes of relatively dense gas from the mini-spiral passing through a transient ring mode at ~ 104 Rg provide a viable scenario for the bright phase of Galactic Center.


Sign in / Sign up

Export Citation Format

Share Document