scholarly journals Mini-spiral as source of material for Sgr A* in bright state

2012 ◽  
Vol 8 (S290) ◽  
pp. 199-200 ◽  
Author(s):  
Bozena Czerny ◽  
Vladimír Karas ◽  
Devaky Kunneriath ◽  
Tapas K. Das

AbstractThe question of the origin of the gas supplying the accretion process is pertinent especially in the context of enhanced activity of Galactic Center during the past few hundred years, seen now as echo from the surrounding molecular clouds, and the currently observed new cloud approaching Sgr A*. We discuss the so-called Galactic Center mini-spiral as a possible source of material feeding the supermassive black hole on a 0.1 parsec scale. The collisions between individual clumps reduce their angular momentum. and set some of the clumps on a plunging trajectory.We conclude that the amount of material contained in the mini-spiral is sufficient to sustain the luminosity of Sgr A* at the required level. The accretion episodes of relatively dense gas from the mini-spiral passing through a transient ring mode at ~ 104 Rg provide a viable scenario for the bright phase of Galactic Center.

2013 ◽  
Vol 9 (S303) ◽  
pp. 320-321
Author(s):  
D. Kunneriath ◽  
B. Czerny ◽  
V. Karas ◽  
T. K. Das

AbstractThe Galactic center supermassive black hole is surrounded by orbiting clouds of gas. These clumps of gas may collide with each other, losing angular momentum and plunging towards the center. Observations of X-ray reflection from molecular clouds surrounding the Galactic center show evidence for enhanced activity of Sagittarius A* during the past few hundred years. These observations enable us to place constraints on the nature of past accretion events responsible for this enhanced activity. We model the source intrinsic luminosity of Sgr A* using multiple accretion events occurring at various moments in time, characterized by a range of angular momentum We also applied our scheme to the case of G2 cloud in the Galactic center.


2018 ◽  
Vol 610 ◽  
pp. A34 ◽  
Author(s):  
D. Chuard ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. Clavel ◽  
S. Soldi ◽  
...  

Context. For a decade now, evidence has accumulated that giant molecular clouds located within the central molecular zone of our Galaxy reflect X-rays coming from past outbursts of the Galactic supermassive black hole. However, the number of illuminating events as well as their ages and durations are still unresolved questions. Aims. We aim to reconstruct parts of the history of the supermassive black hole Sgr A★ by studying this reflection phenomenon in the molecular complex Sgr C and by determining the line-of-sight positions of its main bright substructures. Methods. Using observations made with the X-ray observatories XMM-Newton and Chandra and between 2000 and 2014, we investigated the variability of the reflected emission, which consists of a Fe Kα line at 6.4 keV and a Compton continuum. We carried out an imaging and a spectral analysis. We also used a Monte Carlo model of the reflected spectra to constrain the line-of-sight positions of the brightest clumps, and hence to assign an approximate date to the associated illuminating events. Results. We show that the Fe Kα emission from Sgr C exhibits significant variability in both space and time, which confirms its reflection origin. The most likely illuminating source is Sgr A★. On the one hand, we report two distinct variability timescales, as one clump undergoes a sudden rise and fall in about 2005, while two others vary smoothly throughout the whole 2000–2014 period. On the other hand, by fitting the Monte Carlo model to the data, we are able to place tight constraints on the 3D positions of the clumps. These two independent approaches provide a consistent picture of the past activity of Sgr A★, since the two slowly varying clumps are located on the same wavefront, while the third (rapidly varying) clump corresponds to a different wavefront, that is, to a different illuminating event. Conclusions. This work shows that Sgr A★ experienced at least two powerful outbursts in the past 300 yrs, and for the first time, we provide an estimation of their age. Extending this approach to other molecular complexes, such as Sgr A, will allow this two-event scenario to be tested further.


2013 ◽  
Vol 9 (S303) ◽  
pp. 150-152 ◽  
Author(s):  
N. Sabha ◽  
M. Zamaninasab ◽  
A. Eckart ◽  
L. Moser

AbstractWe find a convex-like feature at a distance of 0.68 pc (17″) from the position of the supermassive black hole, Sgr A*, at the center of the nuclear stellar cluster. This feature resembles a stellar bow shock with a symmetry axis pointing to the center. We discuss the possible nature of the feature and the implications of its alignment with other dusty comet-like objects inside the central parsec.


Science ◽  
2012 ◽  
Vol 338 (6103) ◽  
pp. 84-87 ◽  
Author(s):  
L. Meyer ◽  
A. M. Ghez ◽  
R. Schödel ◽  
S. Yelda ◽  
A. Boehle ◽  
...  

Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy’s supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein’s theory of general relativity in an unexplored regime.


2013 ◽  
Vol 9 (S303) ◽  
pp. 344-348
Author(s):  
M. Clavel ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. R. Morris ◽  
G. Ponti ◽  
...  

AbstractThe supermassive black hole at the Galactic center, Sagittarius A* has experienced periods of higher activity in the past. The reflection of these past outbursts is observed in the molecular material surrounding the black hole but reconstructing its precise lightcurve is difficult since the distribution of the clouds along the line of sight is poorly constrained.Using Chandra high-resolution data collected from 1999 to 2011 we studied both the 6.4 keV and the 4–8 keV emission of the region located between Sgr A* and the Radio arc, characterizing its variations down to 15″ angular scale and 1-year time scale. The emission from the molecular clouds in the region varies significantly, showing either a 2-year peaked emission or 10-year linear variations. This is the first time that such fast variations are measured. Based on the cloud parameters, we conclude that these two behaviors are likely due to two distinct past outbursts of Sgr A* during which its luminosity rose to at least 1039 erg s−1.


2016 ◽  
Vol 11 (S322) ◽  
pp. 253-256
Author(s):  
Maïca Clavel ◽  
Régis Terrier ◽  
Andrea Goldwurm ◽  
Mark R. Morris ◽  
Gabriele Ponti

AbstractThe history of supermassive black holes’ activity can be partly constrained by monitoring the diffuse X-ray emission possibly created by the echoes of past events propagating through the molecular clouds of their respective environments. In particular, using this method we have demonstrated that our Galaxy’s supermassive black hole, Sgr A⋆, has experienced multiple periods of higher activity in the last centuries, likely due to several short but very energetic events, and we now investigate the possibility of studying the past activity of other supermassive black holes by applying the same method to M31⋆. We set strong constraints on putative phase transitions of this more distant galactic nucleus but the existence of short events such as the ones observed in the Galactic center cannot be assessed with the upper limits we derived.


1996 ◽  
Vol 171 ◽  
pp. 369-369
Author(s):  
W.J. Duschl ◽  
S. von Linden ◽  
T. Walter ◽  
M. Wittkowski

Gas and dust in the inner region of the Galaxy are distributed in a flat, disklike structure. We model the dynamics of this material in the framework of an accretion disk approach, and thus determine the efficiency of the radial transport of mass and angular momentum in the inner ∼ 200 pc of the Galactic Plane. Moreover, this allows us to establish the location (coordinates: galactic longitude l and depth normal to the celestial sphere) of molecular clouds from the observed positions (l) and radial velocities (currently, we neglect details of the vertical structure). Ultimately this will yield a map of the distribution of molecular clouds about Sgr A∗.


2013 ◽  
Vol 9 (S303) ◽  
pp. 86-88 ◽  
Author(s):  
Lydia Moser ◽  
A. Eckart ◽  
A. Borkar ◽  
M. García-Marin ◽  
D. Kunneriath ◽  
...  

AbstractWe present the very first detection of N2H+J = (1 – 0) and CH3OH(2k−1k) line emission on 5″ scales in the circumnuclear disk (CND) around Sgr A*. The emission matches the position and shape of the dark clouds in the near-infrared. Our findings suggest that these molecular clouds in the eastern CND are significantly colder and denser than the rest of the CND, and partially shocked. The research on these dark clouds will contribute to understanding the processes of star formation close to a supermassive black hole.


Sign in / Sign up

Export Citation Format

Share Document