scholarly journals Electron Bremsstrahlung Hard X-Ray Spectra, Electron Distributions, and Energetics in the 2002 July 23 Solar Flare

2003 ◽  
Vol 595 (2) ◽  
pp. L97-L101 ◽  
Author(s):  
Gordon D. Holman ◽  
Linhui Sui ◽  
Richard A. Schwartz ◽  
A. Gordon Emslie
2020 ◽  
Vol 642 ◽  
pp. A79
Author(s):  
Natasha L. S. Jeffrey ◽  
Pascal Saint-Hilaire ◽  
Eduard P. Kontar

Solar flare electron acceleration is an extremely efficient process, but the method of acceleration is not well constrained. Two of the essential diagnostics, electron anisotropy (velocity angle to the guiding magnetic field) and the high energy cutoff (highest energy electrons produced by the acceleration conditions: mechanism, spatial extent, and time), are important quantities that can help to constrain electron acceleration at the Sun but both are poorly determined. Here, by using electron and X-ray transport simulations that account for both collisional and non-collisional transport processes, such as turbulent scattering and X-ray albedo, we show that X-ray polarization can be used to constrain the anisotropy of the accelerated electron distribution and the most energetic accelerated electrons together. Moreover, we show that prospective missions, for example CubeSat missions without imaging information, can be used alongside such simulations to determine these parameters. We conclude that a fuller understanding of flare acceleration processes will come from missions capable of both X-ray flux and polarization spectral measurements together. Although imaging polarimetry is highly desired, we demonstrate that spectro-polarimeters without imaging can also provide strong constraints on electron anisotropy and the high energy cutoff.


Solar Physics ◽  
1978 ◽  
Vol 58 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Peter Hoyng ◽  
Joshua W. Knight ◽  
Daniel S. Spicer
Keyword(s):  

Space Weather ◽  
2015 ◽  
Vol 13 (5) ◽  
pp. 286-297 ◽  
Author(s):  
L. M. Winter ◽  
K. Balasubramaniam

1968 ◽  
Vol 46 (10) ◽  
pp. S757-S760 ◽  
Author(s):  
R. P. Lin

The > 40-keV solar-flare electrons observed by the IMP III and Mariner IV satellites are shown to be closely correlated with solar radio and X-ray burst emission. In particular, intense type III radio bursts are observed to accompany solar electron-event flares. The energies of the electrons, the total number of electrons, and the size of the electron source at the sun can be inferred from radio observations. The characteristics of the electrons observed in interplanetary space are consistent with these radio observations. Therefore these electrons are identified as the exciting agents of the type III emission. It has been noted that the radio and X-ray bursts are part of the flash phase of flares. The observations indicate that a striking feature of the flash phase is the production of electrons of 10–100 keV energies.


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


Sign in / Sign up

Export Citation Format

Share Document