energy cutoff
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 16 (12) ◽  
pp. T12017
Author(s):  
P. Abratenko ◽  
R. An ◽  
J. Anthony ◽  
L. Arellano ◽  
J. Asaadi ◽  
...  

Abstract This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two νμ-sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Nikhil Anand ◽  
Emanuel Katz ◽  
Zuhair U. Khandker ◽  
Matthew T. Walters

Abstract We use Lightcone Conformal Truncation (LCT)—a version of Hamiltonian truncation — to study the nonperturbative, real-time dynamics of ϕ4-theory in 2+1 dimensions. This theory has UV divergences that need to be regulated. We review how, in a Hamiltonian framework with a total energy cutoff, renormalization is necessarily state-dependent, and UV sensitivity cannot be canceled with standard local operator counter-terms. To overcome this problem, we present a prescription for constructing the appropriate state-dependent counterterms for (2+1)d ϕ4-theory in lightcone quantization. We then use LCT with this counterterm prescription to study ϕ4-theory, focusing on the ℤ2 symmetry-preserving phase. Specifically, we compute the spectrum as a function of the coupling and demonstrate the closing of the mass gap at a (scheme-dependent) critical coupling. We also compute Lorentz-invariant two-point functions, both at generic strong coupling and near the critical point, where we demonstrate IR universality and the vanishing of the trace of the stress tensor.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Evan Jones ◽  
Zach Germain ◽  
Jakob Niessner ◽  
David Milliken ◽  
Joey Scilla ◽  
...  

2020 ◽  
Vol 905 (1) ◽  
pp. 41
Author(s):  
M. Baloković ◽  
F. A. Harrison ◽  
G. Madejski ◽  
A. Comastri ◽  
C. Ricci ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. A172
Author(s):  
A. Warmuth ◽  
G. Mann

Context. In solar flares, energy is released impulsively and is partly converted into thermal energy of hot plasmas and kinetic energy of accelerated nonthermal particles. It is crucial to constrain the partition of these two energy components to understand energy release and transport as well as particle acceleration in solar flares. Despite numerous efforts, no consensus on quantifying this energy balance has yet been reached. Aims. We aim to understand the reasons for the contradicting results on energy partition obtained by various recent studies. The overarching question we address is whether there is sufficient energy in nonthermal particles to account for the thermal flare component. Methods. We considered five recent studies that address the thermal-nonthermal energy partition in solar flares. Their results are reviewed, and their methods are compared and discussed in detail. Results. The main uncertainties in deriving the energy partition are identified as (a) the derivation of the differential emission measure distribution and (b) the role of the conductive energy loss for the thermal component, as well as (c) the determination of the low-energy cutoff for the injected electrons. The bolometric radiated energy, as a proxy for the total energy released in the flare, is a useful independent constraint on both thermal and nonthermal energetics. In most of the cases, the derived energetics are consistent with this constraint. There are indications that the thermal-nonthermal energy partition changes with flare strength: in weak flares, there appears to be a deficit of energetic electrons, while the injected nonthermal energy is sufficient to account for the thermal component in strong flares. This behavior is identified as the main cause of the dissimilar results in the studies we considered. The changing partition has two important consequences: (a) an additional direct (i.e. non-beam) heating mechanism has to be present, and (b) considering that the bolometric emission originates mainly from deeper atmospheric layers, conduction or waves are required as additional energy transport mechanisms.


2020 ◽  
Vol 642 ◽  
pp. A79
Author(s):  
Natasha L. S. Jeffrey ◽  
Pascal Saint-Hilaire ◽  
Eduard P. Kontar

Solar flare electron acceleration is an extremely efficient process, but the method of acceleration is not well constrained. Two of the essential diagnostics, electron anisotropy (velocity angle to the guiding magnetic field) and the high energy cutoff (highest energy electrons produced by the acceleration conditions: mechanism, spatial extent, and time), are important quantities that can help to constrain electron acceleration at the Sun but both are poorly determined. Here, by using electron and X-ray transport simulations that account for both collisional and non-collisional transport processes, such as turbulent scattering and X-ray albedo, we show that X-ray polarization can be used to constrain the anisotropy of the accelerated electron distribution and the most energetic accelerated electrons together. Moreover, we show that prospective missions, for example CubeSat missions without imaging information, can be used alongside such simulations to determine these parameters. We conclude that a fuller understanding of flare acceleration processes will come from missions capable of both X-ray flux and polarization spectral measurements together. Although imaging polarimetry is highly desired, we demonstrate that spectro-polarimeters without imaging can also provide strong constraints on electron anisotropy and the high energy cutoff.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9556
Author(s):  
Chien-Hung Huang ◽  
Efendi Zaenudin ◽  
Jeffrey J.P. Tsai ◽  
Nilubon Kurubanjerdjit ◽  
Eskezeia Y. Dessie ◽  
...  

Biological processes are based on molecular networks, which exhibit biological functions through interactions of genetic elements or proteins. This study presents a graph-based method to characterize molecular networks by decomposing the networks into directed multigraphs: network subgraphs. Spectral graph theory, reciprocity and complexity measures were used to quantify the network subgraphs. Graph energy, reciprocity and cyclomatic complexity can optimally specify network subgraphs with some degree of degeneracy. Seventy-one molecular networks were analyzed from three network types: cancer networks, signal transduction networks, and cellular processes. Molecular networks are built from a finite number of subgraph patterns and subgraphs with large graph energies are not present, which implies a graph energy cutoff. In addition, certain subgraph patterns are absent from the three network types. Thus, the Shannon entropy of the subgraph frequency distribution is not maximal. Furthermore, frequently-observed subgraphs are irreducible graphs. These novel findings warrant further investigation and may lead to important applications. Finally, we observed that cancer-related cellular processes are enriched with subgraph-associated driver genes. Our study provides a systematic approach for dissecting biological networks and supports the conclusion that there are organizational principles underlying molecular networks.


Author(s):  
Peter Kazinski

AbstractThe quantum theories of boson and fermion fields with quadratic nonstationary Hamiltoanians are rigorously constructed. The representation of the algebra of observables is given by the Hamiltonian diagonalization procedure. The sufficient conditions for the existence of unitary dynamics at finite times are formulated and the explicit formula for the matrix elements of the evolution operator is derived. In particular, this gives the well-defined expression for the one-loop effective action. The ultraviolet and infrared divergencies are regularized by the energy cutoff in the Hamiltonian of the theory. The possible infinite particle production is regulated by the corresponding counterdiabatic terms. The explicit formulas for the average number of particles $$N_D$$ N D recorded by the detector and for the probability w(D) to record a particle by the detector are derived. It is proved that these quantities allow for no-regularization limit and, in this limit, $$N_D$$ N D is finite and $$w(D)\in [0,1)$$ w ( D ) ∈ [ 0 , 1 ) . As an example, the theory of a neutral boson field with stationary quadratic part of the Hamiltonian and nonstationary source is considered. The average number of particles produced by this source from the vacuum during a finite time evolution and the inclusive probability to record a created particle are obtained. The infrared and ultraviolet asymptotics of the average density of created particles are derived. As a particular case, quantum electrodynamics with a classical current is considered. The ultraviolet and infrared asymptotics of the average number of photons are derived. The asymptotics of the average number of photons produced by the adiabatically driven current is found.


2020 ◽  
Vol 497 (1) ◽  
pp. 1059-1065
Author(s):  
Sanhita Kabiraj ◽  
Biswajit Paul

ABSTRACT The Be X-ray binary GRO J2058+42 recently went through a Type-II outburst during 2019 March–April lasting for about 50 d. This outburst was detected with the operating all sky X-ray monitors like the Fermi-GBM, Swift-BAT, and MAXI-GSC. Two Nuclear Spectroscopic Telescope Array(NuSTAR) observations were also made, one during the rise and other during the decay of the outburst. It gave us the unique opportunity to analyse the broad-band characteristics of the pulsar for the first time and accretion torque characteristics of the pulsar over a range of X-ray luminosity. The pulse profiles are strongly energy-dependent, with at least four different pulse components at low energy (< 20 keV), which evolves to a single-peaked profile at high energy (> 30 keV). In each of the narrow energy bands, the pulse profiles are nearly identical in the two NuSTAR observations. The spectra from both the observations are fitted well to a power-law with a Fermi–Dirac-type high-energy cutoff. We ruled out presence of a cyclotron line in the pulse phase averaged X-ray spectrum in the NuSTAR band with an optical depth greater than 0.15. An iron emission line is detected in both the NuSTAR spectra with an equivalent width of about 125 eV. We looked at the dependence of the spin-up rate on the luminosity and estimated the magnetic field strength from that, which came out to be much higher compared to other known BeXRB pulsars. Lastly, we discussed the inadequacy of the torque–luminosity relation for determination of magnetic field strength of neutron stars.


Sign in / Sign up

Export Citation Format

Share Document