Constraints on the Timing of Pan‐African Granulite‐Facies Metamorphism in the Kerala Khondalite Belt of Southern India: SHRIMP Mineral Ages and Nd Isotopic Systematics

2005 ◽  
Vol 113 (1) ◽  
pp. 95-106 ◽  
Author(s):  
K. P. Shabeer ◽  
M. Satish‐Kumar ◽  
R. Armstrong ◽  
I. S. Buick
2019 ◽  
Vol 60 (5) ◽  
pp. 1027-1062 ◽  
Author(s):  
Vinod O Samuel ◽  
Daniel E Harlov ◽  
Sanghoon Kwon ◽  
K Sajeev

Abstract The Nilgiri Block, southern India represents an exhumed section of lower, late Archean (2500 Ma) crust. The northern highlands of the Nilgiri Block are characterized by metagabbros with pyroxenite inlayers. A two-pyroxene granulite zone acts as a transition between the metagabbros and charnockites, which are exposed in the central and southern part of the Nilgiri highlands. Thermobarometry results indicate a SW–NE regional trend both in temperature (∼650–800°C) and in pressure (700–1100 MPa) over the Nilgiri highlands. In the charnockites, composite rutile–ilmenite grains are the dominant oxide assemblage. In the two-pyroxene granulites, hemo-ilmenite–magnetite is dominant with coexisting rutile–ilmenite composite grains in a few samples in the vicinity of the boundary with the charnockites. In the metagabbros, hemo-ilmenite–magnetite is the dominant oxide assemblage. The principal sulphide mineral in the charnockite is pyrrhotite with minor pyrite–chalcopyrite exsolution lamellae or blebs. In the two-pyroxene granulites and the metagabbros, the principal sulphide assemblage consists of discrete pyrite grains with magnetite rims and pyrite–pyrrhotite–chalcocopyrite associations. From these observations, a specific oxidation trend is seen. The northern granulite-facies metagabbros and two-pyroxene granulites of the Nilgiri highlands are highly oxidized compared with the charnockites from the central and southern regions. This higher oxidation state is proposed to be the result of highly oxidizing agents (probably as SO3) in low H2O activity grain boundary NaCl saline fluids with a dissolved CaSO4 component present during granulite-facies metamorphism of the metagabbros and two-pyroxene granulites. Eventually these agents became more reducing, owing to the inherent buffering of the original tonalite–granodiorite granitoids at the graphite–CO2 buffer, such that S took the form of H2S during the granulite-facies metamorphism of the charnockites. At the same time, these saline fluids were also responsible the solid-state conversion of biotite and amphibole to orthopyroxene and clinopyroxene in the metagabbro, two-pyroxene granulite, and charnockite.


2003 ◽  
Vol 67 (3) ◽  
pp. 465-483 ◽  
Author(s):  
K. P. Shabeer ◽  
T. Okudaira ◽  
M. Satish-Kumar ◽  
S. S. Binu-Lal ◽  
Y. Hayasaka

AbstractScheelite mineralization in the granulite-facies supracrustal sequences of the Kerala Khondalite Belt, southern India is reported. The supracrustal sequences where the mineralization is found comprise granulite-grade metasediments which underwent metamorphism at ∼550 Ma. The mineralization is assumed to have formed by late-stage metasomatism that overprinted the regional metamorphism of the country rock (garnet-biotite gneiss) and occurs along a quartz vein that intrudes the regional foliation. The paragenetic data from the vein demonstrate unambiguously a separate cycle of hydrothermal activity, resulting in metasomatism and mineralization. Scheelite is found in both the altered host rock along the foliation plane and in the quartz vein. Fluid inclusions preserved in the vein suggest that the mineralizing fluids were saline-aqueous in composition, while those in the country rocks were predominantly CO2-rich. The mineral chemistry and bulk-rock chemical composition of the mineralized domain reveal the unusual enrichment of Ca in the mineralised zone with the depletion of K. We propose that fluid discharging from a crystallizing deep-seated magma, mixing with deep circulating Ca-bearing palaeo-groundwater gave rise to the deposition of scheelite. The scheelite mineralization and the quartz vein emplacement occurred after the Pan-African regional metamorphism.


Sign in / Sign up

Export Citation Format

Share Document