specific oxidation
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Mahesha M. Poojary ◽  
Marianne N. Lund

Protein is a major nutrient present in foods along with carbohydrates and lipids. Food proteins undergo a wide range of modifications during food production, processing, and storage. In this review, we discuss two major reactions, oxidation and the Maillard reaction, involved in chemical modifications of food proteins. Protein oxidation in foods is initiated by metal-, enzyme-, or light-induced processes. Food protein oxidation results in the loss of thiol groups and the formation of protein carbonyls and specific oxidation products of cysteine, tyrosine, tryptophan, phenylalanine, and methionine residues, such as disulfides, dityrosine, kynurenine, m-tyrosine, and methionine sulfoxide. The Maillard reaction involves the reaction of nucleophilic amino acid residues with reducing sugars, which yields numerous heterogeneous compounds such as α-dicarbonyls, furans, Strecker aldehydes, advanced glycation end-products, and melanoidins. Both protein oxidation and the Maillard reaction result in the loss of essential amino acids but may positively or negatively impact food structure and flavor. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 13 (2) ◽  
pp. 17
Author(s):  
Natarajan Raju ◽  
Rolf E. Swenson

Preferential oxidation of primary hydroxyls in unprotected sugars and sugar amino acids is reported using inexpensive and readily available reagents. This method offers a specific oxidation protocol for a variety of carbohydrates. The stereochemical integrity of the starting materials was preserved and a simple workup yielded the products in good yields with high purity. The procedure is compatible with base sensitive groups like Fmoc.  Both mono and disaccharides undergo oxidation regioselectively.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3719
Author(s):  
Ana Catarina Sousa ◽  
Lígia O. Martins ◽  
M. Paula Robalo

Laccases are multicopper oxidases that have shown a great potential in various biotechnological and green chemistry processes mainly due to their high relative non-specific oxidation of phenols, arylamines and some inorganic metals, and their high redox potentials that can span from 500 to 800 mV vs. SHE. Other advantages of laccases include the use of readily available oxygen as a second substrate, the formation of water as a side-product and no requirement for cofactors. Importantly, addition of low-molecular-weight redox mediators that act as electron shuttles, promoting the oxidation of complex bulky substrates and/or of higher redox potential than the enzymes themselves, can further expand their substrate scope, in the so-called laccase-mediated systems (LMS). Laccase bioprocesses can be designed for efficiency at both acidic and basic conditions since it is known that fungal and bacterial laccases exhibit distinct optimal pH values for the similar phenolic and aromatic amines. This review covers studies on the synthesis of five- and six-membered ring heterocyclic cores, such as benzimidazoles, benzofurans, benzothiazoles, quinazoline and quinazolinone, phenazine, phenoxazine, phenoxazinone and phenothiazine derivatives. The enzymes used and the reaction protocols are briefly outlined, and the mechanistic pathways described.


2021 ◽  
Vol 7 (6) ◽  
pp. 450
Author(s):  
Lina Dafne Sánchez-Corzo ◽  
Peggy Elizabeth Álvarez-Gutiérrez ◽  
Rocío Meza-Gordillo ◽  
Juan José Villalobos-Maldonado ◽  
Sofía Enciso-Pinto ◽  
...  

Wood-decay fungi are characterized by ligninolytic and hydrolytic enzymes that act through non-specific oxidation and hydrolytic reactions. The objective of this work was to evaluate the production of lignocellulolytic enzymes from collected fungi and to analyze their growth on lignocellulosic material. The study considered 18 species isolated from collections made in the state of Chiapas, Mexico, identified by taxonomic and molecular techniques, finding 11 different families. The growth rates of each isolate were obtained in culture media with African palm husk (PH), coffee husk (CH), pine sawdust (PS), and glucose as control, measuring daily growth with images analyzed in ImageJ software, finding the highest growth rate in the CH medium. The potency index (PI) of cellulase, xylanase, and manganese peroxidase (MnP) activities was determined, as well as the quantification of lignin peroxidase (LiP), with the strains Phlebiopsis flavidoalba TecNM-ITTG L20-19 and Phanerochaete sordida TecNM-ITTG L32-1-19 being the ones with the highest PI of hydrolase activities with 2.01 and 1.83 cellulase PI and 1.95 and 2.24 xylanase PI, respectively, while Phlebiopsis flavidoalba TecNM-ITTG L20-19 and Trametes sanguinea TecNM-ITTG L14-19 with 7115 U/L LiP activity had the highest oxidase activities, indicating their ability to oxidize complex molecules such as lignin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter P. Ricci ◽  
Otto J. Gregory

AbstractIn a world focused on the development of cybersecurity, many densely populated areas and transportation hubs are still susceptible to terrorist attacks via improvised explosive devices (IEDs). These devices frequently employ a combination of peroxide based explosives as well as nitramines, nitrates, and nitroaromatics. Detection of these explosives can be challenging due to varying chemical composition and the extremely low vapor pressures exhibited by some explosive compounds. No electronic trace detection system currently exists that is capable of continuously monitoring both peroxide based explosives and certain nitrogen based explosives, or their precursors, in the vapor phase. Recently, we developed a thermodynamic sensor that can detect a multitude of explosives in the vapor phase at the parts-per-trillion (ppt) level. The sensors rely on the catalytic decomposition of the explosive and specific oxidation–reduction reactions between the energetic molecule and metal oxide catalyst; i.e. the heat effects associated with catalytic decomposition and redox reactions between the decomposition products and catalyst are measured. Improved sensor response and selectivity were achieved by fabricating free-standing, ultrathin film (1 µm thick) microheater sensors for this purpose. The fabrication method used here relies on the interdiffusion mechanics between a copper (Cu) adhesion layer and the palladium (Pd) microheater sensor. A detailed description of the fabrication process to produce a free-standing 1 µm thick sensor is presented.


2021 ◽  
Vol 12 ◽  
Author(s):  
Réka Mócsai ◽  
Kathrin Göritzer ◽  
David Stenitzer ◽  
Daniel Maresch ◽  
Richard Strasser ◽  
...  

Plant glycoproteins display a characteristic type of O-glycosylation where short arabinans or larger arabinogalactans are linked to hydroxyproline. The conversion of proline to 4-hydroxyproline is accomplished by prolyl-hydroxylases (P4Hs). Eleven putative Nicotiana benthamiana P4Hs, which fall in four homology groups, have been identified by homology searches using known Arabidopsis thaliana P4H sequences. One member of each of these groups has been expressed in insect cells using the baculovirus expression system and applied to synthetic peptides representing the O-glycosylated region of erythropoietin (EPO), IgA1, Art v 1 and the Arabidopsis thaliana glycoprotein STRUBBELIG. Unlike the situation in the moss Physcomitrella patens, where one particular P4H was mainly responsible for the oxidation of erythropoietin, the tobacco P4Hs exhibited rather similar activities, albeit with biased substrate preferences and preferred sites of oxidation. From a biotechnological viewpoint, this result means that silencing/knockout of a single P4H in N. benthamiana cannot be expected to result in the abolishment of the plant-specific oxidation of prolyl residues in a recombinant protein.


2021 ◽  
Author(s):  
Masato Saito ◽  
Yu Kawamata ◽  
Michael Meanwell ◽  
Rafael Navratil ◽  
Debora Chiodi ◽  
...  

<p>The site-specific oxidation of strong C(sp3)-H bonds is of uncontested utility in organic</p><p>synthesis. From simplifying access to metabolites and late-stage diversification of lead compounds</p><p>to truncating retrosynthetic plans, there is a growing need for new reagents and methods for</p><p>achieving such a transformation in both academic and industrial circles. One main drawback of</p><p>current chemical reagents is the lack of diversity with regards to structure and reactivity that</p><p>prevent a combinatorial approach for rapid screening to be employed. In that regard, directed</p><p>evolution still holds the greatest promise for achieving complex C–H oxidations in a variety of</p><p>complex settings. Herein we present a rationally designed platform that provides a step towards</p><p>this challenge using N-ammonium ylides as electrochemically driven oxidants for site-specific,</p><p>chemoselective C(sp3)–H oxidation. By taking a first-principles approach guided by computation,</p><p>these new mediators were identified and rapidly expanded into a library using ubiquitous building</p><p>blocks and trivial synthesis techniques. The ylide-based approach to C–H oxidation exhibits</p><p>tunable selectivity that is often exclusive to this class of oxidants and can be applied to real world</p><p>problems in the agricultural and pharmaceutical sectors.</p>


2021 ◽  
Author(s):  
Masato Saito ◽  
Yu Kawamata ◽  
Michael Meanwell ◽  
Rafael Navratil ◽  
Debora Chiodi ◽  
...  

<p>The site-specific oxidation of strong C(sp3)-H bonds is of uncontested utility in organic</p><p>synthesis. From simplifying access to metabolites and late-stage diversification of lead compounds</p><p>to truncating retrosynthetic plans, there is a growing need for new reagents and methods for</p><p>achieving such a transformation in both academic and industrial circles. One main drawback of</p><p>current chemical reagents is the lack of diversity with regards to structure and reactivity that</p><p>prevent a combinatorial approach for rapid screening to be employed. In that regard, directed</p><p>evolution still holds the greatest promise for achieving complex C–H oxidations in a variety of</p><p>complex settings. Herein we present a rationally designed platform that provides a step towards</p><p>this challenge using N-ammonium ylides as electrochemically driven oxidants for site-specific,</p><p>chemoselective C(sp3)–H oxidation. By taking a first-principles approach guided by computation,</p><p>these new mediators were identified and rapidly expanded into a library using ubiquitous building</p><p>blocks and trivial synthesis techniques. The ylide-based approach to C–H oxidation exhibits</p><p>tunable selectivity that is often exclusive to this class of oxidants and can be applied to real world</p><p>problems in the agricultural and pharmaceutical sectors.</p>


Sign in / Sign up

Export Citation Format

Share Document