scholarly journals T Cell Activation in HIV‐Seropositive Ugandans: Differential Associations with Viral Load, CD4+T Cell Depletion, and Coinfection

2005 ◽  
Vol 191 (5) ◽  
pp. 694-701 ◽  
Author(s):  
Mark P. Eggena ◽  
Banson Barugahare ◽  
Martin Okello ◽  
Steven Mutyala ◽  
Norman Jones ◽  
...  
Pancreatology ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 1637-1647
Author(s):  
Juliane Glaubitz ◽  
Anika Wilden ◽  
Cindy van den Brandt ◽  
Frank U. Weiss ◽  
Barbara M. Bröker ◽  
...  

2005 ◽  
Vol 79 (10) ◽  
pp. 6299-6311 ◽  
Author(s):  
Geoffrey H. Holm ◽  
Dana Gabuzda

ABSTRACT Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4+ and CD8+ T cells. Infection of primary T-cell cultures with ELI6 induced CD4+ T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4+ and CD8+ T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4+ T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8+ T cells was triggered by a soluble factor(s) secreted by CD4+ T cells. HIV-1 virions activated CD4+ and CD8+ T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25+HLA-DR+ T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4+ and CD8+ T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Omalla A. Olwenyi ◽  
Bannet Asingura ◽  
Prossy Naluyima ◽  
Godwin Upoki Anywar ◽  
Justine Nalunga ◽  
...  

Abstract Background In Sub-Saharan Africa, herbal therapy continues to be utilized for HIV-1 disease management. However, the therapeutic benefits of these substances remain ambiguous. To date, little is known about the effects of these plant extracts on chronic CD4 + T-cell activation and exhaustion which is partly driven by HIV-1 associated microbial translocation. Methods Effects of Azadirachta indica, Momordica foetida and Moringa oleifera ethanol: water mixtures on cell viability were evaluated using the Guava PCA system. Then, an in-vitro cell culture model was developed to mimic CD4+ T cell exposures to antigens following HIV-1 microbial translocation. In this, peripheral blood mononuclear cells (PBMCs) isolated from HIV negative (n = 13), viral load < 1000 copies per mL (n = 10) and viral load > 1000 copies per mL (n = 6) study participants from rural Uganda were treated with Staphylococcus enterotoxin B (SEB). Then, the candidate plant extract (A. indica) was added to test the potential to inhibit corresponding CD4+ T cell activation. Following BD Facs Canto II event acquisition, variations in %CD38, %CD69, Human Leukocyte Antigen -DR (HLA-DR), Programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), interferon gamma (IFN γ) and interleukin 2 (IL-2) CD4 + T cell expression were evaluated. Results Following exposure to SEB, only A. indica demonstrated a concentration-dependent ability to downregulate the levels of CD4 + T cell activation. At the final concentration of 0.500 μg/mL of A. indica, a significant downregulation of CD4 + CD38 + HLA-DR+ expression was observed in HIV negative (p < 0.0001) and both HIV infected groups (P = 0.0313). This plant extract also significantly lowered SEB induced % CD4+ T cell HLADR, PD-1 and Tim-3 levels. PD-1 and CD69 markers were only significantly downmodulated in only the HIV negative ((p = 0.0001 and p = 0.0078 respectively) and viral load< 1000 copies per ml (p = 0.0078) groups. Conclusion A. indica exhibited the in-vitro immunomodulatory potential to inhibit the continuum of SEB induced CD4+ T-cell activation/ exhaustion without impacting general T-cell specific functions such as cytokine secretion. Additional studies are needed to confirm A. indica as a source of natural products for targeting persistent immune activation and inflammation during ART.


2008 ◽  
Vol 197 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Peter W. Hunt ◽  
Jason Brenchley ◽  
Elizabeth Sinclair ◽  
Joseph M. McCune ◽  
Michelle Roland ◽  
...  

2006 ◽  
Vol 41 (3) ◽  
pp. 259-265 ◽  
Author(s):  
Miles P. Davenport ◽  
Lei Zhang ◽  
John W. Shiver ◽  
Danilo R. Casmiro ◽  
Ruy M. Ribeiro ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jean-Philippe Herbeuval ◽  
Nikaïa Smith ◽  
Jacques Thèze

Despite variability, the majority of HIV-1-infected individuals progress to AIDS characterized by high viral load and massive CD4+ T-cell depletion. However, there is a subset of HIV-1-positive individuals that does not progress and spontaneously maintains an undetectable viral load. This infrequent patient population is defined as HIV-1 controllers (HIV controllers), and represents less than 1% of HIV-1-infected patients. HIV-1-specific CD4+ T cells and the pool of central memory CD4+ T cells are also preserved despite immune activation due to HIV-1 infection. The majority of HIV controllers are also defined by the absence of massive CD4+ T-cell depletion, even after 10 years of infection. However, the mechanisms involved in protection against HIV-1 disease progression have not been elucidated yet. Controllers represent a heterogeneous population; we describe in this paper some common characteristics concerning innate immune response and CD4+ T cells of HIV controllers.


Sign in / Sign up

Export Citation Format

Share Document