scholarly journals Discovery of the Pre-Main-Sequence Population of the Stellar Association LH 95 in the Large Magellanic Cloud with Hubble Space Telescope Advanced Camera for Surveys Observations

2007 ◽  
Vol 665 (1) ◽  
pp. L27-L30 ◽  
Author(s):  
Dimitrios A. Gouliermis ◽  
Thomas Henning ◽  
Wolfgang Brandner ◽  
Andrew E. Dolphin ◽  
Michael Rosa ◽  
...  
2019 ◽  
Vol 486 (4) ◽  
pp. 5581-5599 ◽  
Author(s):  
Christina K Gilligan ◽  
Brian Chaboyer ◽  
Jeffrey D Cummings ◽  
Dougal Mackey ◽  
Roger E Cohen ◽  
...  

Abstract We present a multiple population search in two old Large Magellanic Cloud (LMC) Globular clusters, Hodge 11 and NGC 2210. This work uses data from the Advanced Camera for Surveys and Wide Field Camera 3 on the Hubble Space Telescope from programme GO-14164 in Cycle 23. Both of these clusters exhibit a broadened main sequence with the second population representing (20 ± ∼5) per cent for NGC 2210 and (30 ± ∼5) per cent for Hodge 11. In both clusters, the smaller population is redder than the primary population, suggesting CNO variations. Hodge 11 also displays a bluer second population in the horizontal branch, which is evidence for helium enhancement. However, even though NGC 2210 shows similarities to Hodge 11 in the main sequence, there does not appear to be a second population on NGC 2210’s horizontal branch. This is the first photometric evidence that ancient LMC Globular clusters exhibit multiple stellar populations.


2020 ◽  
Vol 494 (2) ◽  
pp. 1946-1955
Author(s):  
Christina K Gilligan ◽  
Brian Chaboyer ◽  
Jeffrey D Cummings ◽  
Dougal Mackey ◽  
Roger E Cohen ◽  
...  

ABSTRACT We examine four ancient Large Magellanic Cloud (LMC) globular clusters (GCs) for evidence of multiple stellar populations using the Advanced Camera for Surveys and Wide Field Camera 3 on the Hubble Space Telescope Programme GO-14164. NGC 1466, NGC 1841, and NGC 2257 all show evidence for a redder, secondary population along the main sequence. Reticulum does not show evidence for the presence of a redder population, but this GC has the least number of stars and Monte Carlo simulations indicate that the sample of main-sequence stars is too small to robustly infer whether a redder population exists in this cluster. The second, redder, population of the other three clusters constitutes $\sim 30-40{{\ \rm per\ cent}}$ of the total population along the main sequence. This brings the total number of ancient LMC GCs with known split or broadened main sequences to five. However, unlike for Hodge 11 and NGC 2210 (see Gilligan et al. (2019)), none of the clusters shows evidence for multiple populations in the horizontal branch. We also do not find evidence of a second population along the red giant branch.


2009 ◽  
Vol 5 (S266) ◽  
pp. 545-548
Author(s):  
Antonella Vallenari ◽  
Rosanna Sordo ◽  
Emanuela Chiosi

AbstractMagellanic Clouds are of extreme importance to study the star-formation process in low-metallicity environments. Here, we discuss the clustering properties of the pre-main-sequence candidates and young embedded stellar objects in N 11, located in the Large Magellanic Cloud. Deep archival HST/ACS photometry is used to derive color–magnitude diagrams of the associations in N 11 and of the foreground field population. These data are complemented by archival infrared Spitzer data which allow detection of young embedded stellar objects. The spatial distribution of the pre-main-sequence candidates and young embedded stellar objects is discussed. The degree of clustering is derived using the minimal-spanning-tree method. No significant difference is found in clustering degree of young blue main-sequence stars and faint pre-main-sequence candidates, suggesting that they might be part of the same formation process.


2008 ◽  
Vol 4 (S256) ◽  
pp. 250-255
Author(s):  
Dimitrios A. Gouliermis

AbstractThe Magellanic Clouds offer a unique variety of star forming regions seen as bright nebulae of ionized gas, related to bright young stellar associations. Nowadays, observations with the high resolving efficiency of the Hubble Space Telescope allow the detection of the faintest infant stars, and a more complete picture of clustered star formation in our dwarf neighbors has emerged. I present results from our studies of the Magellanic Clouds, with emphasis in the young low-mass pre-main sequence populations. Our data include imaging with the Advanced Camera for Surveys of the association LH 95 in the Large Magellanic Cloud, the deepest observations ever taken with HST of this galaxy. I discuss our findings in terms of the initial mass function, which we constructed with an unprecedented completeness down to the sub-solar regime, as the outcome of star formation in the low-metallicity environment of the LMC.


1999 ◽  
Vol 117 (1) ◽  
pp. 206-224 ◽  
Author(s):  
Noah Brosch ◽  
Michael Shara ◽  
John MacKenty ◽  
David Zurek ◽  
Brian McLean

2001 ◽  
Vol 205 ◽  
pp. 312-313
Author(s):  
E. Niemczura ◽  
H. Cugier

An analysis of the spatially resolved (0.1) main-sequence stars of four compact multiple systems located in the Large Magellanic Cloud (LMC) is given. For this purpose we compared theoretical synthetic spectra with the observations obtained by means of the Faint Object Spectrograph (FOS) aboard the Hubble Space Telescope (HST).


Sign in / Sign up

Export Citation Format

Share Document