Real-Time Polymerase Chain Reaction Detection of Asymptomatic Clostridium difficile Colonization and Rising C. difficile–Associated Disease Rates

2014 ◽  
Vol 35 (6) ◽  
pp. 667-673 ◽  
Author(s):  
Hoonmo L. Koo ◽  
John N. Van ◽  
Meina Zhao ◽  
Xunyan Ye ◽  
Paula A. Revell ◽  
...  

Objective.To evaluate the accuracy of real-time polymerase chain reaction (PCR) for Clostridium difficile–associated disease (CDAD) detection, after hospital CDAD rates significantly increased following real-time PCR initiation for CDAD diagnosis.Design.Hospital-wide surveillance study following examination of CDAD incidence density rates by interrupted time series design.Setting.Large university-based hospital.Participants.Hospitalized adult patients.Methods.CDAD rates were compared before and after real-time PCR implementation in a university hospital and in the absence of physician and infection control practice changes. After real-time PCR introduction, all hospitalized adult patients were screened for C. difficile by testing a fecal specimen by real-time PCR, toxin enzyme-linked immunosorbent assay, and toxigenic culture.Results.CDAD hospital rates significantly increased after changing from cell culture cytotoxicity assay to a real-time PCR assay. One hundred ninety-nine hospitalized subjects were enrolled, and 101 fecal specimens were collected. C. difficile was detected in 18 subjects (18%), including 5 subjects (28%) with either definite or probable CDAD and 13 patients (72%) with asymptomatic C. difficile colonization.Conclusions.The majority of healthcare-associated diarrhea is not attributable to CDAD, and the prevalence of asymptomatic C. difficile colonization exceeds CDAD rates in healthcare facilities. PCR detection of asymptomatic C. difficile colonization among patients with non-CDAD diarrhea may be contributing to rising CDAD rates and a significant number of CDAD false positives. PCR may be useful for CDAD screening, but further study is needed to guide interpretation of PCR detection of C. difficile and the value of confirmatory tests. A gold standard CDAD diagnostic assay is needed.Infect Control Hosp Epidemiol 2014;35(6):667–673

Author(s):  
Ika Yasma Yanti ◽  
Dalima Ari Wahono Astrawinata

Toxigenic Clostridium difficile infection, causing a Pseudo Membrane Colitis (PMC) and Clostridium Difficile Associated Diarrhea(CDAD) has increased sharply. The largest risk factor is the use of antibiotics. The purpose of this study was to know how to determinethe prevalence and characteristics of subjects with Toxigenic Clostridium difficile and to assess the ability of the toxin rapid test comparedto real-time PCR. Ninety adult subjects with antibiotic therapy more than two (2) weeks were enrolled in this study. The results of toxinrapid test and real-time PCR were presented in a 2x2 table, statistical test used was Chi square. The prevalence of Toxigenic Clostridiumdifficile based on the toxin rapid test and by real-time PCR was 27.3% and 37.5%, respectively. There were significant differences betweenstool consistency and number of antibiotics used with the detection of Toxigenic Clostridium difficile. There was a relationship betweenthe duration of antibiotic therapy with the detection of Toxigenic Clostridium difficile using real-time PCR (p=0.010, RR=2.116). Thesensitivity, specificity, PPV, NPV, PLR and NLR rapid test against real-time PCR were 69.7%; 98.2%; 95.8%; 84.4%; 39.2 and 0.31,respectively. This study concluded that the prevalence of Clostridium difficile in RSCM was higher compared to that in Malaysia, Thailandand India; the subjects with antibiotic therapy for more than four (4) weeks had a double risk to have Toxigenic Clostridium difficilethan subjects with antibiotic therapy for less than that time (4 weeks). Thus, in this study, toxin rapid test could be used as a tool todetect Toxigenic Clostridium difficile.


2017 ◽  
Vol 33 (S1) ◽  
pp. 77-77
Author(s):  
Kátia Senna ◽  
Marisa Santos ◽  
Bernardo Tura

INTRODUCTION:Clostridium difficile infection is the leading cause of nosocomial diarrhea in developed countries and may progress to pseudomembranous colitis, sepsis and death. The risk factors are antibiotics use, advanced age and prolonged hospitalization. The diagnosis of Clostridium difficile infection is based on clinical history in combination with laboratory tests, which detect the Clostridium difficile presence or toxins. Clostridium difficile remains in spore form contaminating the environment and requiring measures to prevent hospital transmission. Tests with more accurate results to identify true carriers of Clostridium difficile allow the clinician to determine a safer treatment. This study evaluated accuracy and cost-effectiveness of the real-time polymerase chain reaction compared with the enzyme-linked immunosorbent assay from the perspective of a Brazilian public cardiology hospital.METHODS:A study diagram was constructed by type of test, linking the data of prevalence in hospital, accuracy and direct costs of tests. The costs were based on a hypothetical population comparing two strategies to identify the incremental expenditure between technologies. The analysis included comparisons for each test versus no test, and with each other. The prices were converted to the American currency taking into account the date of purchase of each product and respective price.RESULTS:For real-time polymerase chain reaction test versus no test, 214 patients would have tested to justify one empirical treatment suspension, at a cost of USD90,926.46. For enzyme-linked immunosorbent assay test, to prevent one unnecessary treatment, 375 patients would have to be tested at a cost of USD6,603.75. In the comparative analysis, only a single false-positive patient would have the treatment suspended after performing 375 real-time polymerase chain reaction tests at USD424.89 each one (USD159,333.75 in total). An incremental cost of USD152,730.00 may be necessary to benefit a single patient by discontinuing empirical treatment.CONCLUSIONS:The Real-time polymerase chain reaction test has restrictions as a test of choice for the diagnosis of Clostridium difficile infection, in services with low disease prevalence. It undergoes a significant change in its positive predictive value and does not offer a great impact in the clinical diagnosis.


2010 ◽  
Vol 134 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Zhengming Gu ◽  
Jianmin Pan ◽  
Matthew J. Bankowski ◽  
Randall T. Hayden

Abstract Context.—BK virus infections among immunocompromised patients are associated with disease of the kidney or urinary bladder. High viral loads, determined by quantitative polymerase chain reaction (PCR), have been correlated with clinical disease. Objective.—To develop and evaluate a novel method for real-time PCR detection and quantification of BK virus using labeled primers. Design.—Patient specimens (n = 54) included 17 plasma, 12 whole blood, and 25 urine samples. DNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Science, Indianapolis, Indiana); sample eluate was PCR-amplified using the labeled primer PCR method. Results were compared with those of a user-developed quantitative real-time PCR method (fluorescence resonance energy transfer probe hybridization). Results.—Labeled primer PCR detected less than 10 copies per reaction and showed quantitative linearity from 101 to 107 copies per reaction. Analytical specificity of labeled primer PCR was 100%. With clinical samples, labeled primer PCR demonstrated a trend toward improved sensitivity compared with the reference method. Quantitative assay comparison showed an R2 value of 0.96 between the 2 assays. Conclusions.—Real-time PCR using labeled primers is highly sensitive and specific for the quantitative detection of BK virus from a variety of clinical specimens. These data demonstrate the applicability of labeled primer PCR for quantitative viral detection and offer a simplified method that removes the need for separate oligonucleotide probes.


Sign in / Sign up

Export Citation Format

Share Document