Effects of wildfire on stream algal abundance, community structure, and nutrient limitation

2015 ◽  
Vol 34 (4) ◽  
pp. 1494-1509 ◽  
Author(s):  
Kristie Klose ◽  
Scott D. Cooper ◽  
Danuta M. Bennett
2005 ◽  
Vol 62 (1) ◽  
pp. 174-184 ◽  
Author(s):  
Michelle F Bowman ◽  
Patricia A Chambers ◽  
David W Schindler

Low-level cultural eutrophication (0.1–3.8 µ·L–1 increase in total phosphorus (TP)) of oligotrophic mountain rivers resulted in 4- to 30-fold increases in benthic algal abundance. Because anthropogenic P was more bioavailable than naturally occurring P, there were higher algal abundances downstream relative to upstream of nutrient point sources at a given P concentration. Neither TP nor soluble reactive P concentrations were indicative of P bio availability. Of the measures studied, epilithic alkaline phosphatase activity was most strongly correlated with algal abundance, most indicative of P bioavailability and thus the most precise indicator of P limitation. Although changes in dissolved inorganic nitrogen (DIN) to P ratios in river water and carbon (C) to P ratios in epilithon were consistent with changes in algal abundance and nutrient limitation, published water DIN to TP and tissue C to P ratio thresholds did not always yield accurate predictions of the type or degree of nutrient limitation. Epilithic N to P ratios and algal growth on nutrient-diffusing substrates were also inexact measures of epilithic nutrient limitation but, unlike other measures, were not strongly correlated with algal abundance. Thus, the predictability of the benthic algal response to anthropogenic nutrient additions in oligotrophic rivers will be improved by using measures indicative of both nutrient limitation and bioavailability.


2002 ◽  
Vol 59 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Rolf D Vinebrooke ◽  
Sushil S Dixit ◽  
Mark D Graham ◽  
John M Gunn ◽  
Yu-Wei Chen ◽  
...  

A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors.


2012 ◽  
Vol 69 (8) ◽  
pp. 1433-1443 ◽  
Author(s):  
Matthew N. Waters ◽  
Michael F. Piehler ◽  
Joseph M. Smoak ◽  
Thomas S. Bianchi

This research details changes in lake algal community structure that occurred during dystrophication. We conducted a paleolimnological investigation of Pungo Lake, a shallow, dystrophic system near the coast of North Carolina, USA. Multiple chemical and biological proxies were measured on a sediment core, including sedimentary photosynthetic pigments, lignin-phenols, nutrients, and δ13C. Data analysis identified three zones of algal community structure corresponding to three regimes of organic matter inputs. Predystrophic conditions represented a period of low organic inputs but substantial algal abundance (diatoms and other algal types). The period of dystrophication preceded European settlement (1850) and showed an increase in organic matter deposition, lignin, and a change in lignin type. Lignin-phenols and δ13C signatures of organic matter indicated that terrestrial organic matter inputs increased during this period, possibly as a result of wetland expansion. Dystrophication also corresponded to an increase in algal groups that favor low light environments (cyanobacteria and cryptophytes).


2014 ◽  
Vol 65 ◽  
pp. 87-95 ◽  
Author(s):  
Pramod N. Kamble ◽  
Vishwas B. Gaikwad ◽  
Shashikant R. Kuchekar ◽  
Erland Bååth

2021 ◽  
Author(s):  
Amechi Sampson Nwankwegu ◽  
Yiping Li ◽  
Lei Zhang ◽  
Yanan Huang ◽  
Deti Xie ◽  
...  

Abstract The freshwater ecosystem characteristics in terms of nutrient inventory across seasons, spatial variations of chl-a biomass, and the phytoplankton community structure are prudent ecological assessment indices for a bloom management protocol. We evaluated the spatial and seasonal chl-a distribution under different nutrient conditions and phytoplankton community structure in a eutrophic Three Gorges reservoir tributary China. Result showed significant variations in biomass production with the mainstream reaches severely affected. The nutrient addition bioassay demonstrated significant stimulations on growth in both autumn and summer. The nutrient limitation pattern shifted from P in autumn and spring to N limitation during summer. Combined additions of trace metals with N, P, and Si in autumn and Fe alone enrichment in summer and spring showed maximum productivity. The phytoplankton community structure demonstrated strong sensitivities to seasonal variabilities with regime shift from Cyanophyta, dominated by the toxic and hypoxia generating, Microcystis spp in both autumn and summer, the Cryptophyta dominated by the Chroomonas acuta in spring to the Bacilliariophyta dominated by the genera, Cyclotella in winter. This reflected the ability of the Bacilliariophyta to thrive under a low-temperature condition. Combined N&P led to significant growth stimulation in summer while P alone controlled the bulk of the growth in autumn. The study points to the need for extending mitigation steps to the mainstream towards achieving lasting bloom management solution in the impacted tributary.


SIMBIOSA ◽  
2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Notowinarto Notowinarto ◽  
Ramses Ramses ◽  
Mulhairi Mulhairi

Bulang districts Batam Islands of  Riau province (Riau Islands), its consists of many islands with as well as having the potential diversity of coastal marine life in particular kinds of macro algae or seaweed. Conducted research aimed to determine the structure of macro- algal communities in the intertidal zone islands. The results of the identification of algal species found 16 species are: the Order of Chlorophyceae as 6 spesies; Order Phaeophyceae as 2 spesies; and Order Rhodophyceae as 8 spesies. The community structure at the five stations showed the highest values were found in the island of dominance Cicir (D ' = 0.79) , uniformity index values on Tengah Island (E ' = 0.99) , while the island Balak had the highest diversity index (H ' = 0.88) , with the abundance patterns of population structure on the island is pretty good Central . Results of correlation analysis of regression between IVI types of algae with the conditions of environmental quality suggests that there is a significance (Fhit ˃ F table and the value of r = > 90 %) between IVI algae Halimeda sp and Cryptarachne polyglandulosa at each station with a temperature parameter surface (⁰C) , depth temperature (⁰C) and pH values. Keywords : Algae, Community Structure, Important Value Index.


Sign in / Sign up

Export Citation Format

Share Document