Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

2018 ◽  
Vol 37 (2) ◽  
pp. 343-356
Author(s):  
C. Ashton Drew ◽  
Michele Eddy ◽  
Thomas J. Kwak ◽  
W. Gregory Cope ◽  
Tom Augspurger
Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 174
Author(s):  
Alan D. Christian ◽  
Andrew J. Peck ◽  
Ryan Allen ◽  
Raven Lawson ◽  
Waylon Edwards ◽  
...  

Habitat degradation, organismal needs, and other effects influencing freshwater mussel declines have been subject to intense focus by conservationists for the last thirty plus years. While researchers have studied the physical habitat requirements and needs of mussels in small- to medium-sized rivers with variable levels of success, less research has been conducted on mussel habitat in larger non-wadeable rivers, especially at the reach scale, where core flow environmental conditions provide and maintain habitat for freshwater mussels. We designed a quasi-experimental observational field study to examine seven hydrologic energy and material variables laterally and longitudinally at Current and Extirpated mussel bed habitat reaches in lower White River, Arkansas, a large non-wadeable, sand-bed-material-dominated river. As expected, lateral and longitudinal hydrologic variable differences were identified within a reach. Mean velocity, bed velocity, the Froude number, and stream power were all significantly lower at Current mussel bed habitat stations within a sampling reach. Energy regime differences in shear stress and, marginally, stream power were higher at Extirpated mussel bed habitat reaches. Several factors emerged as important to mussel habitat in the White River. First, bed velocity warrants further exploration in terms of both flow strength and flow direction. Second, bedload appears to be the primary contributor to mussel habitat but requires additional exploration within the context of core and secondary flow pathway interactions. The combined empirical evidence from our study supports the flow refugium concept identified for mussel habitats in smaller systems but expands the concept to large non-wadeable streams and includes reach-scale refuge from sediment transport conditions.


2008 ◽  
Vol 6 ◽  
pp. 95-107
Author(s):  
JM Hemming ◽  
PV Winger ◽  
H Rauschenberger ◽  
K Herrington ◽  
P Durkee ◽  
...  

2018 ◽  
Vol 34 (8) ◽  
pp. 977-992 ◽  
Author(s):  
Jeffrey C. Cole ◽  
Philip A. Townsend ◽  
Keith N. Eshleman ◽  
Barbara St. John White ◽  
Heather S. Galbraith ◽  
...  

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Jimaima Lako ◽  
Nanise Kuridrani ◽  
Milika Sobey

This paper examines the local freshwater mussel, or kai (Batissa violacea), fishery value chain, its values and contribution to the livelihood of people in Viti Levu, Fiji. The assessment was performed through face-to-face interviews, with the use of semi-structured questionnaires administered to 125 actors. A walk through the value-chain was also conducted that confirmed the sites’ environmental conditions. Results revealed that even though the kai fishery is dominated by rural women, men were also employed as kai processors, transporting agents and exporters. This fishery generated at least 58 other employments through the 500 kai harvesters within the five major provinces understudy. These were drivers, boat builders, retailers, processors, exporters, and harvesters. Three sales pathways were identified that determined the revenues and profits: (i) harvesters sell own harvests directly to the consumer at the municipal markets, (ii) harvesters sell through intermediary traders to consumers, and (iii) harvesters sell through processors to supermarkets, hotels or exporters. When revenues and profits were calculated, harvesters earned much less, compared to intermediary traders, processors, and exporters. Major constraints include continuous reduction in catch size of kai, lack of transport, and marketing at the local municipal markets that require improvements.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 119
Author(s):  
Adrianna Kilikowska ◽  
Monika Mioduchowska ◽  
Anna Wysocka ◽  
Agnieszka Kaczmarczyk-Ziemba ◽  
Joanna Rychlińska ◽  
...  

Mussels of the family Unionidae are important components of freshwater ecosystems. Alarmingly, the International Union for Conservation of Nature and Natural Resources Red List of Threatened Species identifies almost 200 unionid species as extinct, endangered, or threatened. Their decline is the result of human impact on freshwater habitats, and the decrease of host fish populations. The Thick Shelled River Mussel Unio crassus Philipsson, 1788 is one of the examples that has been reported to show a dramatic decline of populations. Hierarchical organization of riverine systems is supposed to reflect the genetic structure of populations inhabiting them. The main goal of this study was an assessment of the U. crassus genetic diversity in river ecosystems using hierarchical analysis. Different molecular markers, the nuclear ribosomal internal transcribed spacer ITS region, and mitochondrial DNA genes (cox1 and ndh1), were used to examine the distribution of U. crassus among-population genetic variation at multiple spatial scales (within rivers, among rivers within drainages, and between drainages of the Neman and Vistula rivers). We found high genetic structure between both drainages suggesting that in the case of the analyzed U. crassus populations we were dealing with at least two different genetic units. Only about 4% of the mtDNA variation was due to differences among populations within drainages. However, comparison of population differentiation within drainages for mtDNA also showed some genetic structure among populations within the Vistula drainage. Only one haplotype was shared among all Polish populations whereas the remainder were unique for each population despite the hydrological connection. Interestingly, some haplotypes were present in both drainages. In the case of U. crassus populations under study, the Mantel test revealed a relatively strong relationship between genetic and geographical distances. However, in detail, the pattern of genetic diversity seems to be much more complicated. Therefore, we suggest that the observed pattern of U. crassus genetic diversity distribution is shaped by both historical and current factors i.e. different routes of post glacial colonization and history of drainage systems, historical gene flow, and more recent habitat fragmentation due to anthropogenic factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Seok Kim ◽  
Kevin J. Roe

AbstractDetailed information on species delineation and population genetic structure is a prerequisite for designing effective restoration and conservation strategies for imperiled organisms. Phylogenomic and population genomic analyses based on genome-wide double digest restriction-site associated DNA sequencing (ddRAD-Seq) data has identified three allopatric lineages in the North American freshwater mussel genus Cyprogenia. Cyprogenia stegaria is restricted to the Eastern Highlands and displays little genetic structuring within this region. However, two allopatric lineages of C. aberti in the Ozark and Ouachita highlands exhibit substantial levels (mean uncorrected FST = 0.368) of genetic differentiation and each warrants recognition as a distinct evolutionary lineage. Lineages of Cyprogenia in the Ouachita and Ozark highlands are further subdivided reflecting structuring at the level of river systems. Species tree inference and species delimitation in a Bayesian framework using single nucleotide polymorphisms (SNP) data supported results from phylogenetic analyses, and supports three species of Cyprogenia over the currently recognized two species. A comparison of SNPs generated from both destructively and non-destructively collected samples revealed no significant difference in the SNP error rate, quality and amount of ddRAD sequence reads, indicating that nondestructive or trace samples can be effectively utilized to generate SNP data for organisms for which destructive sampling is not permitted.


Sign in / Sign up

Export Citation Format

Share Document