scholarly journals A DETECTION OF DARK MATTER HALO ELLIPTICITY USING GALAXY CLUSTER LENSING IN THE SDSS

2009 ◽  
Vol 695 (2) ◽  
pp. 1446-1456 ◽  
Author(s):  
Anna Kathinka Dalland Evans ◽  
Sarah Bridle
2019 ◽  
Vol 489 (2) ◽  
pp. 2014-2029 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Tomotsugu Goto ◽  
Rieko Momose ◽  
Chien-Chang Ho ◽  
Ryu Makiya ◽  
...  

ABSTRACT Galaxies evolve from a blue star-forming phase into a red quiescent one by quenching their star formation activity. In high-density environments, this galaxy evolution proceeds earlier and more efficiently. Therefore, local galaxy clusters are dominated by well-evolved red elliptical galaxies. The fraction of blue galaxies in clusters monotonically declines with decreasing redshift, i.e. the Butcher–Oemler effect. In the local Universe, observed blue fractions of massive clusters are as small as ≲0.2. Here we report a discovery of a ‘blue cluster’ that is a local galaxy cluster with an unprecedentedly high fraction of blue star-forming galaxies yet hosted by a massive dark matter halo. The blue fraction is 0.57, which is 4.0σ higher than those of the other comparison clusters under the same selection and identification criteria. The velocity dispersion of the member galaxies is 510 km s−1, which corresponds to a dark matter halo mass of 2.0$^{+1.9}_{-1.0}\times 10^{14}$ M⊙. The blue fraction of the cluster is more than 4.7σ beyond the standard theoretical predictions including semi-analytic models of galaxy formation. The probability to find such a high blue fraction in an individual cluster is only 0.003 per cent, which challenges the current standard frameworks of the galaxy formation and evolution in the ΛCDM universe. The spatial distribution of galaxies around the blue cluster suggests that filamentary cold gas streams can exist in massive haloes even in the local Universe. However these cold streams have already disappeared in the theoretically simulated local universes.


2018 ◽  
Vol 14 (S342) ◽  
pp. 141-144
Author(s):  
Michele Doro ◽  
Joaquim Palacio ◽  
Javier Rico ◽  
Monica Vazquez Acosta

AbstractGalaxy clusters are excellent targets for high energy astrophysics with gamma rays. Not only they may host active galaxies, but they are often expected to provide signatures of accelerations of electrons and protons to PeV energies. Furthermore, according to ΛCDM scenario, they should be embedded in an extremely massive dark matter halo, the largest halo expected. In this report, we summarize the recently published MAGIC lower limits on the decaying dark matter lifetime using 202 h of selected high quality data taken on the Perseus galaxy cluster, in a 5-year long campaign.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2012 ◽  
Vol 758 (1) ◽  
pp. L23 ◽  
Author(s):  
Sarah R. Loebman ◽  
Željko Ivezić ◽  
Thomas R. Quinn ◽  
Fabio Governato ◽  
Alyson M. Brooks ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2005 ◽  
Vol 13 ◽  
pp. 199-199
Author(s):  
Terry Bridges ◽  
Steve Zepf ◽  
Katherine Rhode ◽  
Ken Freeman

AbstractWe have found 56 new globular clusters in M104 from 2dF multi-fiber spectroscopy, doubling the number of confirmed clusters, and extending the spatial coverage to 50 kpc radius. We find no significant rotation in the total sample, or for subsets split by color or radius. However, there are hints that the blue clusters have a higher rotation than the red clusters, and for counter-rotation of clusters at large radius. We find a total mass of M ~ 1 × 1012M⊙ and a (M/L)B =30 out to 50 kpc radius, which is strong evidence for a dark matter halo in M104.


Sign in / Sign up

Export Citation Format

Share Document