scholarly journals A young galaxy cluster in the old Universe

2019 ◽  
Vol 489 (2) ◽  
pp. 2014-2029 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Tomotsugu Goto ◽  
Rieko Momose ◽  
Chien-Chang Ho ◽  
Ryu Makiya ◽  
...  

ABSTRACT Galaxies evolve from a blue star-forming phase into a red quiescent one by quenching their star formation activity. In high-density environments, this galaxy evolution proceeds earlier and more efficiently. Therefore, local galaxy clusters are dominated by well-evolved red elliptical galaxies. The fraction of blue galaxies in clusters monotonically declines with decreasing redshift, i.e. the Butcher–Oemler effect. In the local Universe, observed blue fractions of massive clusters are as small as ≲0.2. Here we report a discovery of a ‘blue cluster’ that is a local galaxy cluster with an unprecedentedly high fraction of blue star-forming galaxies yet hosted by a massive dark matter halo. The blue fraction is 0.57, which is 4.0σ higher than those of the other comparison clusters under the same selection and identification criteria. The velocity dispersion of the member galaxies is 510 km s−1, which corresponds to a dark matter halo mass of 2.0$^{+1.9}_{-1.0}\times 10^{14}$ M⊙. The blue fraction of the cluster is more than 4.7σ beyond the standard theoretical predictions including semi-analytic models of galaxy formation. The probability to find such a high blue fraction in an individual cluster is only 0.003 per cent, which challenges the current standard frameworks of the galaxy formation and evolution in the ΛCDM universe. The spatial distribution of galaxies around the blue cluster suggests that filamentary cold gas streams can exist in massive haloes even in the local Universe. However these cold streams have already disappeared in the theoretically simulated local universes.

1994 ◽  
Vol 161 ◽  
pp. 649-651
Author(s):  
K. Rakos ◽  
J. Schombert ◽  
T. Maindl ◽  
N. Unger ◽  
P. Obitsch

Rest-frame Strömgren colours are presented for a large number of galaxies in rich clusters between z = 0 and z = 1. Our observations confirm a strong, rest-frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z < 0.4 to 80% at z = 0.9. After isolating the red objects in each cluster we have compared the mean colour of these old, non-star forming objects with SED models from the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single burst models which predict an epoch of galaxy formation from z = 2 to 5 (Rakos et al. 1988, 1991; Rakos & Schombert 1993). Although the results demonstrate a great deal of hope for modelling the fine details of colour evolution when our samples are extended into the near- and far-IR, there are reasons to believe that galaxies become, observationally, much more complicated beyond redshifts of 1. The rate of blue colour evolution between 0.6 and 0.9 suggests that by a redshift of 1.5 it will be impossible to tell the difference between galaxies which have completed a single burst at a formation redshift of 2 or ones which are undergoing constant star formation.


2011 ◽  
Vol 7 (S279) ◽  
pp. 353-354
Author(s):  
Jirong Mao

AbstractLong gamma-ray bursts (GRBs) can be linked to the massive stars and their host galaxies are assumed to be the star-forming galaxies within small dark matter halos. We apply a galaxy evolution model, in which the star formation process inside the virialized dark matter halo at a given redshift is achieved. The star formation rates (SFRs) in the GRB host galaxies at different redshifts can be derived from our model. The related stellar masses, luminosities, and metalicities of these GRB host galaxies are estimated. We also calculate the X-ray and optical absorption of GRB afterglow emission. At higher redshift, the SFR of host galaxy is stronger, and the absorption in the X-ray and optical bands of GRB afterglow is stronger, when the dust and metal components are locally released, surrounding the GRB environment. These model predictions are compared with some observational data as well.


2020 ◽  
Vol 501 (1) ◽  
pp. 236-253
Author(s):  
Jonathan J Davies ◽  
Robert A Crain ◽  
Andrew Pontzen

ABSTRACT We examine the influence of dark matter halo assembly on the evolution of a simulated ∼L⋆ galaxy. Starting from a zoom-in simulation of a star-forming galaxy evolved with the EAGLE galaxy formation model, we use the genetic modification technique to create a pair of complementary assembly histories: one in which the halo assembles later than in the unmodified case, and one in which it assembles earlier. Delayed assembly leads to the galaxy exhibiting a greater present-day star formation rate than its unmodified counterpart, while in the accelerated case the galaxy quenches at z ≃ 1, and becomes spheroidal. We simulate each assembly history nine times, adopting different seeds for the random number generator used by EAGLE’s stochastic subgrid implementations of star formation and feedback. The systematic changes driven by differences in assembly history are significantly stronger than the random scatter induced by this stochasticity. The sensitivity of ∼L⋆ galaxy evolution to dark matter halo assembly follows from the close coupling of the growth histories of the central black hole (BH) and the halo, such that earlier assembly fosters the formation of a more massive BH, and more efficient expulsion of circumgalactic gas. In response to this expulsion, the circumgalactic medium reconfigures at a lower density, extending its cooling time and thus inhibiting the replenishment of the interstellar medium. Our results indicate that halo assembly history significantly influences the evolution of ∼L⋆ central galaxies, and that the expulsion of circumgalactic gas is a crucial step in quenching them.


2020 ◽  
Vol 499 (2) ◽  
pp. 2912-2933
Author(s):  
Jonathan Freundlich ◽  
Fangzhou Jiang ◽  
Avishai Dekel ◽  
Nicolas Cornuault ◽  
Omry Ginzburg ◽  
...  

ABSTRACT We explore a function with two shape parameters for the dark-matter halo density profile subject to baryonic effects, which is a special case of the general Zhao family of models applied to simulated dark-matter haloes by Dekel et al. This profile has variable inner slope and concentration parameter, and analytic expressions for the gravitational potential, velocity dispersion, and lensing properties. Using the Numerical Investigation of a Hundred Astrophysical Objects cosmological simulations, we find that it provides better fits than the Einasto profile and the generalized NFW profile with variable inner slope, in particular towards the halo centres. We show that the profile parameters are correlated with the stellar-to-halo mass ratio Mstar/Mvir. This defines a mass-dependent density profile describing the average dark-matter profiles in all galaxies, which can be directly applied to observed rotation curves of galaxies, gravitational lenses, and semi-analytic models of galaxy formation or satellite–galaxy evolution. The effect of baryons manifests itself by a significant flattening of the inner density slope and a 20 per cent decrease of the concentration parameter for Mstar/Mvir = 10−3.5–10−2, corresponding to $M_{\rm star} \!\sim \! 10^{7-10}\, \mathrm{ M}_\odot$. The accuracy by which this profile fits simulated galaxies is similar to certain multiparameter mass-dependent profiles, but its fewer parameters and analytic nature make it most desirable for many purposes.


2006 ◽  
Vol 2 (S235) ◽  
pp. 139-139
Author(s):  
L. Sodré ◽  
A. Mateus ◽  
R. Cid Fernandes ◽  
G. Stasińska ◽  
W. Schoenell ◽  
...  

AbstractWe revisit the bimodality of the galaxy population seen in the local universe. We address this issue in terms of physical properties of galaxies, such as mean stellar ages and stellar masses, derived from the application of a spectral synthesis method to galaxy spectra from the SDSS. We show that the mean light-weighted stellar age of galaxies presents the best description of the bimodality seen in the galaxy population. The stellar mass has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results give support to the existence of a ‘downsizing’ in galaxy formation, where nowadays massive galaxies tend to have stellar populations older than those found in less massive objects.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2009 ◽  
Vol 695 (2) ◽  
pp. 1446-1456 ◽  
Author(s):  
Anna Kathinka Dalland Evans ◽  
Sarah Bridle

2018 ◽  
Vol 56 (1) ◽  
pp. 435-487 ◽  
Author(s):  
Risa H. Wechsler ◽  
Jeremy L. Tinker

In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as high-resolution cosmological simulations has provided a new window into the statistical relationship between galaxies and halos and its evolution. Here, we define this galaxy–halo connection as the multivariate distribution of galaxy and halo properties that can be derived from observations and simulations. This galaxy–halo connection provides a key test of physical galaxy-formation models; it also plays an essential role in constraints of cosmological models using galaxy surveys and in elucidating the properties of dark matter using galaxies. We review techniques for inferring the galaxy–halo connection and the insights that have arisen from these approaches. Some things we have learned are that galaxy-formation efficiency is a strong function of halo mass; at its peak in halos around a pivot halo mass of 1012M⊙, less than 20% of the available baryons have turned into stars by the present day; the intrinsic scatter in galaxy stellar mass is small, less than 0.2 dex at a given halo mass above this pivot mass; below this pivot mass galaxy stellar mass is a strong function of halo mass; the majority of stars over cosmic time were formed in a narrow region around this pivot mass. We also highlight key open questions about how galaxies and halos are connected, including understanding the correlations with secondary properties and the connection of these properties to galaxy clustering.


2020 ◽  
Vol 642 ◽  
pp. L12
Author(s):  
Ewa L. Łokas

Elongated, bar-like galaxies without a significant disk component, with little rotation support and no gas, often form as a result of tidal interactions with a galaxy cluster, as was recently demonstrated using the IllustrisTNG-100 simulation. Galaxies that exhibit similar properties are, however, also found to be infalling into the cluster for the first time. We use the same simulation to study in detail the history of such a galaxy over cosmic time in order to determine its origin. The bar appears to be triggered at t = 6.8 Gyr by the combined effect of the last significant merger with a subhalo and the first passage of another dwarf satellite, both ten times less massive than the galaxy. The satellites deposit all their gas in the galaxy, contributing to its third and last star-formation episode, which perturbs the disk and may also contribute to the formation of the bar. The galaxy then starts to lose its gas and dark matter due to its passage near a group of more massive galaxies. The strongest interaction involves a galaxy 22 times more massive, leaving the barred galaxy with no gas and half of its maximum dark matter mass. During this time, the bar grows steadily, seemingly unaffected by the interactions, although they may have aided its growth by stripping the gas. The studied galaxy, together with two other similar objects briefly discussed in this Letter, suggest the existence of a new class of early-type barred galaxies and thereby demonstrate the importance of interactions in galaxy formation and evolution.


Sign in / Sign up

Export Citation Format

Share Document