scholarly journals THE HOST GALAXIES OF LOW-MASS BLACK HOLES

2011 ◽  
Vol 742 (2) ◽  
pp. 68 ◽  
Author(s):  
Yan-Fei Jiang ◽  
Jenny E. Greene ◽  
Luis C. Ho ◽  
Ting Xiao ◽  
Aaron J. Barth
Keyword(s):  
2019 ◽  
Vol 14 (S353) ◽  
pp. 286-288
Author(s):  
Dieu D. Nguyen

AbstractThe existence intermediate mass black holes (IMBH, MBH ≲ 106M⊙) at the centers low-mass galaxies with stellar masses between (1–10)×10M⊙ are key to constraining the origin of black hole (BH) seeds and understanding the physics deriving the co-evolution of central BHs and their host galaxies. However, finding and weighing IMBH is challenging. Here, we present the first observational evidence for such IMBHs at the centers of the five nearest early-type galaxies (D < 3.5 Mpc, ETGs) revealed by adaptive optics kinematics from Gemini and VLT and high-resolution HST spectroscopy. We find that all five galaxies appear to host IMBHs with four of the five having masses below 1 million M⊙ and the lowest mass BH being only ∼7,000 M⊙. This work provides a first glimpse of the demographics of IMBHs in this galaxy mass range and at velocity dispersions < 70 km/s, and thus provides an important extension to the bulge mass and galaxy dispersion scaling relations. The ubiquity of central BHs in these galaxies provides a unique constraint on BH seed formation scenarios, favoring a formation mechanism that produces an abundance of low-mass seed BHs.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Roberto Decarli ◽  
Renato Falomo ◽  
Jari K. Kotilainen ◽  
Tomi Hyvönen ◽  
Michela Uslenghi ◽  
...  

TheMBH-Mhostrelation in quasars has been probed only in a limited parameter space, namely, atMBH∼109 M⊙andMhost∼1012 M⊙. Here we present a study of 26 quasars laying in the low-mass end of the relation, down toMBH∼107 M⊙. We selected quasars from the SDSS and HST-FOS archives, requiring modestMBH(as derived through the virial paradigm). We imaged our sources inHband from the Nordic Optical Telescope. The quasar host galaxies have been resolved in 25 out of 26 observed targets. Host galaxy luminosities and stellar masses are computed, under reasonable assumptions on their star formation histories. Combining these results with those from our previous studies, we manage to extend the sampled parameter space of theMBH-Mhostrelation in quasars. The relation holds over 2 dex in both the parameters. For the first time, we are able to measure the slope of theMBH-Mhostrelation in quasars. We find that it is consistent with the linear case (similarly to what observed in quiescent galaxies). We do not find any evidence of a population of massive black holes lying below the relation.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2008 ◽  
Author(s):  
Smita Mathur ◽  
Himel Ghosh ◽  
Laura Ferrarese ◽  
Fabrizio Fiore ◽  
Sandip K. Chakrabarti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document