The kinetics of potassium dihydrogen phosphate crystal growth from aqueous solution

1977 ◽  
Vol 10 (17) ◽  
pp. 2393-2396 ◽  
Author(s):  
M S Joshi ◽  
A V Antony
Author(s):  
N. A. Verezub ◽  
V. L. Manomenova ◽  
A. I. Prostomolotov

Finding the conditions of high-speed single crystal growth with an appropriate quality is a priority for the industrial production of crystalline materials. Crystals of potassium dihydrogen phosphate (KDP) are important optical materials, they are grown from an aqueous solution and an increase in the rate of growth and quality of a single crystal is of great practical importance.In this paper, mathematical simulation of hydrodynamic and mass transfer processes in growing KDP crystals is performed. The flow and mass transfer are modeled within the framework of continuous medium, which is considered as an aqueous solution of a special salt — potassium dihydrogen phosphate. This salt dissolves in water to a saturation level at a high temperature. Then, such supersaturated solution is used to grow crystals at lower temperatures in non-flowing and flowing crystallizers. The mathematical model is considered in a conjugate formulation with allowance for mass transfer in the«solution—crystal» system. Local features of hydrodynamics and mass transfer in a solution near the surface of a growing crystal are determined, which can affect on the local (for a particular place and direction) crystal growth rate and the formation of defects. The requirements to the crystallizers that provide the «necessary» hydrodynamics in the solution are discussed. Its validation is shown for the flow around a long horizontal plate simulating the growing facet of the crystal. The rate of precipitation of salt was evaluated by the proposed mathematical model, which matches the calculation of solution flow according to the Navier-Stokes equations for an incompressible fluid with a thermodynamic condition for the normal growth of a face under conditions of two-dimensional nucleation. The action of the flowing crystallizers was analyzed for various solution inflows (axial and ring) and its outflow through the axial bottom hole.


2017 ◽  
Vol 898 ◽  
pp. 1783-1786
Author(s):  
Lei Zhang ◽  
Yi Su ◽  
Yu Lin Wu ◽  
Yao Liu ◽  
Yong Wang ◽  
...  

The viscosity of potassium dihydrogen phosphate, KH2PO4 (KDP), aqueous solution within magnetic field was studied. Experimental results showed that, the viscosity of saturated KDP solution exhibited multiple extreme values when the magnetic field intensity increased from 0 Gs to 2250 Gs. Influences of the magnetic field intensity on the viscosity of KDP solution were very complicated. It’s concerned with the temperature and the concentration of solution. As the KDP was produced from aqueous solution within magnetic field, the temperature and the concentration of solution also needed to be carefully controlled. Magnetic field with intensity values of 300 Gs, 600 Gs and 1800 Gs, all have the strong effects on the structures of KDP aqueous solution.


2012 ◽  
Vol 554-556 ◽  
pp. 31-34 ◽  
Author(s):  
Xu Zhang ◽  
De Xiang Jia

A chemical bond simulation was proposed to quantitatively calculate the growth rate from the kinetic model of the crystal-solution interface. When this approach was applied to the cases of potassium dihydrogen phosphate (KDP) crystals grown from the solution with different surpersaturation, the growth behaviors of KDP crystals were predicted and the calculated results were consistent with the experimental data. These results demonstrate that regulating the distribution of the chemical bonds between the crystal and solution interfaces can effectively control the crystal morphology. Seeding experiments with the chemical bond simulation may have significant potential towards the development of shape-controlled growth with defined conditions.


2012 ◽  
Vol 581-582 ◽  
pp. 727-730 ◽  
Author(s):  
Xu Zhang ◽  
De Xiang Jia ◽  
Hua Xie

The geometric shape of a crystal can be simulated via a thermodynamic model using breaking bond energy calculations. When this model was applied to the case of the KDP crystal, a thermodynamic description of the KDP crystal growth was successfully developed, which was consistent with experimental observations. Additionally, the effect of surface chemistry on the morphology of the KDP crystal was also investigated using the model based on the surface energy of the KDP crystal. These results confirm that bond making and breaking strongly influence the thermodynamic morphology of the KDP crystal during the crystallization.


Sign in / Sign up

Export Citation Format

Share Document