Modeling and analysis of a novel combined peninsula–island structure diaphragm for ultra-low pressure sensing with high sensitivity

2016 ◽  
Vol 49 (7) ◽  
pp. 075110 ◽  
Author(s):  
Tingzhong Xu ◽  
Libo Zhao ◽  
Zhuangde Jiang ◽  
Yu Xu ◽  
Yulong Zhao
2020 ◽  
Vol 121 ◽  
pp. 105841 ◽  
Author(s):  
E. Vorathin ◽  
Z.M. Hafizi ◽  
N. Ismail ◽  
M. Loman

1983 ◽  
Vol 130 (9) ◽  
pp. 1950-1957 ◽  
Author(s):  
K. F. Jensen ◽  
D. B. Graves

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 438 ◽  
Author(s):  
Youngsang Ko ◽  
Dabum Kim ◽  
Goomin Kwon ◽  
Jungmok You

Improved pressure sensing is of great interest to enable the next-generation of bioelectronics systems. This paper describes the development of a transparent, flexible, highly sensitive pressure sensor, having a composite sandwich structure of elastic silver nanowires (AgNWs) and poly(ethylene glycol) (PEG). A simple PEG photolithography was employed to construct elastic AgNW-PEG composite patterns on flexible polyethylene terephthalate (PET) film. A porous PEG hydrogel structure enabled the use of conductive AgNW patterns while maintaining the elasticity of the composite material, features that are both essential for high-performance pressure sensing. The transparency and electrical properties of AgNW-PEG composite could be precisely controlled by varying the AgNW concentration. An elastic AgNW-PEG composite hydrogel with 0.6 wt % AgNW concentration exhibited high transmittance including T550nm of around 86%, low sheet resistance of 22.69 Ω·sq−1, and excellent bending durability (only 5.8% resistance increase under bending to 10 mm radius). A flexible resistive pressure sensor based on our highly transparent AgNW-PEG composite showed stable and reproducible response, high sensitivity (69.7 kPa−1), low sensing threshold (~2 kPa), and fast response time (20–40 ms), demonstrating the effectiveness of the AgNW-PEG composite material as an elastic conductor.


Author(s):  
Lingfeng Zhu ◽  
Yancheng Wang ◽  
Xin Wu ◽  
Deqing Mei

Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.


2021 ◽  
Author(s):  
Liqiang Qiu ◽  
Dexin Ba ◽  
Dengwang Zhou ◽  
Qi Chu ◽  
Zongda Zhu ◽  
...  

Author(s):  
Li Zhang ◽  
Zhisheng Yang ◽  
Łukasz Szostkiewicz ◽  
Krzysztof Markiewicz ◽  
Tomasz Nasilowski ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1103
Author(s):  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jun Ho Lee ◽  
Seung Beom Shin ◽  
Jeong Wan Jo ◽  
...  

Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa−1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = −0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS.


Sign in / Sign up

Export Citation Format

Share Document