scholarly journals Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1103
Author(s):  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jun Ho Lee ◽  
Seung Beom Shin ◽  
Jeong Wan Jo ◽  
...  

Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa−1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = −0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiu-man Wang ◽  
Lu-qi Tao ◽  
Min Yuan ◽  
Ze-ping Wang ◽  
Jiabing Yu ◽  
...  

AbstractSensitivity and pressure range are two significant parameters of pressure sensors. Existing pressure sensors have difficulty achieving both high sensitivity and a wide pressure range. Therefore, we propose a new pressure sensor with a ternary nanocomposite Fe2O3/C@SnO2. The sea urchin-like Fe2O3 structure promotes signal transduction and protects Fe2O3 needles from mechanical breaking, while the acetylene carbon black improves the conductivity of Fe2O3. Moreover, one part of the SnO2 nanoparticles adheres to the surfaces of Fe2O3 needles and forms Fe2O3/SnO2 heterostructures, while its other part disperses into the carbon layer to form SnO2@C structure. Collectively, the synergistic effects of the three structures (Fe2O3/C, Fe2O3/SnO2 and SnO2@C) improves on the limited pressure response range of a single structure. The experimental results demonstrate that the Fe2O3/C@SnO2 pressure sensor exhibits high sensitivity (680 kPa−1), fast response (10 ms), broad range (up to 150 kPa), and good reproducibility (over 3500 cycles under a pressure of 110 kPa), implying that the new pressure sensor has wide application prospects especially in wearable electronic devices and health monitoring.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 442
Author(s):  
Kyobin Keum ◽  
Jae Sang Heo ◽  
Jimi Eom ◽  
Keon Woo Lee ◽  
Sung Kyu Park ◽  
...  

Textile-based pressure sensors have garnered considerable interest in electronic textiles due to their diverse applications, including human–machine interface and healthcare monitoring systems. We studied a textile-based capacitive pressure sensor array using a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)/ionic liquid (IL) composite film. By constructing a capacitor structure with Ag-plated conductive fiber electrodes that are embedded in fabrics, a capacitive pressure sensor showing high sensitivity, good operation stability, and a wide sensing range could be created. By optimizing the PVDF-HFP:IL ratio (6.5:3.5), the fabricated textile pressure sensors showed sensitivity of 9.51 kPa−1 and 0.69 kPa−1 in the pressure ranges of 0–20 kPa and 20–100 kPa, respectively. The pressure-dependent capacitance variation in our device was explained based on the change in the contact-area formed between the multi-filament fiber electrodes and the PVDF-HFP/IL film. To demonstrate the applicability and scalability of the sensor device, a 3 × 3 pressure sensor array was fabricated. Due to its matrix-type array structure and capacitive sensing mechanism, multi-point detection was possible, and the different positions and the weights of the objects could be identified.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamid Reza Ansari ◽  
Zoheir Kordrostami

Abstract In this paper, the improvement of the sensitivity of a capacitive MEMS pressure sensor is investigated. The proposed spring for the sensor can increase the sensitivity. Silicon is used as the substrate and gold and aluminium nitrate are used as the diaphragm and the dielectric layer, respectively. The dimensions of the diaphragm are 150 µm × 150 µm, which is suspended by four springs. The air gap between the diaphragm and the top electrode is 1.5 µm. The proposed structure is an efficient sensor for the pressures in the range of 1–20 kPa. By using the proposed design, the sensitivity of the MEMS sensor in 18 kPa has improved to 663 (× 10−3 pF/kPa).


2020 ◽  
Author(s):  
Xiu Wang ◽  
Lu-Qi Tao ◽  
Min Yuan ◽  
Ze-Ping Wang ◽  
Jiabing Yu ◽  
...  

Abstract Sensitivity and pressure range are two significant parameters of pressure sensors. The existing pressure sensors are difficult to achieve both high sensitivity and a wide pressure range. In this regard, we proposed a new pressure sensor with a ternary nanocomposite Fe2O3/C@SnO2. Notably, the sea urchin-like Fe2O3 structure promoted signal transduction and protected Fe2O3 needles from mechanical breaking; while, acetylene carbon black improved the conductivity of Fe2O3. Moreover, one part of SnO2 nanoparticles adhered to the surface of Fe2O3 needles and formed Fe2O3/SnO2 heterostructures whereas its other part of nanoparticles dispersed into the carbon layer and formed SnO2@C structures. Collectively, the synergy of the three structures (Fe2O3/C, Fe2O3/SnO2 and SnO2@C) improved the limited pressure response range of a single structure. The experimental results demonstrated that the Fe2O3/C@SnO2 pressure sensor exhibits high sensitivity (680 kPa-1), fast response (10 ms), broad range (up to 150 kPa), and good reproducibility (over 3500 cycles under a pressure of 110 kPa). This implies that the new pressure sensor has wide application prospects especially in wearable electronic devices and health monitoring.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5069
Author(s):  
Tim Mike de Rijk ◽  
Walter Lang

Flexible pressure sensors with piezoresistive polymer composites can be integrated into elastomers to measure pressure changes in sealings, preemptively indicating a replacement is needed before any damage or leakage occurs. Integrating small percentages of high aspect ratio multi-walled carbon nanotubes (MWCNTs) into polymers does not significantly change its mechanical properties but highly affects its electrical properties. This research shows a pressure sensor based on homogeneous dispersed MWCNTs in polydimethylsiloxane with a high sensitivity region (0.13% kPa−1, 0–200 kPa) and sensitive up to 500 kPa. A new 3D-printed mold is developed to directly deposit the conductive polymer on the electrode structures, enabling sensor thicknesses as small as 100 μm.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 996
Author(s):  
Norliana Yusof ◽  
Badariah Bais ◽  
Jumril Yunas ◽  
Norhayati Soin ◽  
Burhanuddin Yeop Majlis

The LC-MEMS pressure sensor is an attractive option for an implantable sensor. It senses pressure wirelessly through an LC resonator, eliminating the requirement for electrical wiring or a battery system. However, the sensitivity of LC-MEMS pressure sensors is still comparatively low, especially in biomedical applications, which require a highly-sensitive sensor to measure low-pressure variations. This study presents the microfabrication of an LC wireless MEMS pressure sensor that utilizes a PMMA-Graphene (PMMA/Gr) membrane supported on a silicon trench as the deformable structure. The (PMMA/Gr) membrane was employed to increase the sensor’s sensitivity due to its very low elastic modulus making it easy to deform under extremely low pressure. The overall size of the fabricated sensor was limited to 8 mm × 8 mm. The experimental results showed that the capacitance value changed from 1.64 pF to 12.32 pF when the applied pressure varied from 0 to 5 psi. This capacitance variation caused the frequency response to change from 28.74 MHz to 78.76 MHz. The sensor sensitivity was recorded with a value of 193.45 kHz/mmHg and a quality factor of 21. This study concludes that the (PMMA/Gr) membrane-based LC-MEMS pressure sensor has been successfully designed and fabricated and shows good potential in biomedical sensor applications.


Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000373-000378
Author(s):  
R. Otmani ◽  
N. Benmoussa ◽  
K. Ghaffour

Piezoresistive pressure sensors based on Silicon have a large thermal drift because of their high sensitivity to temperature (ten times more sensitive to temperature than metals). So the study of the thermal behavior of these sensors is essential to define the parameters that cause the drift of the output characteristics. In this study, we adopted the behavior of 2nd degree gauges depending on the temperature. Then we model the thermal behavior of the sensor and its characteristics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


Sign in / Sign up

Export Citation Format

Share Document