A proposal for measuring the local ion distribution function and the neutral-density profile in toroidal plasmas

1977 ◽  
Vol 17 (1) ◽  
pp. 144-147 ◽  
Author(s):  
M. Brusati
1994 ◽  
Vol 12 (10/11) ◽  
pp. 1076-1084 ◽  
Author(s):  
I. A. Barghouthi ◽  
A. R. Barakat ◽  
R. W. Schunk

Abstract. Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E×B drift and ion-neutral collisions. The majority of previous literature, in which the effect of ion self-collisions was neglected, established a clear picture for the ion distribution under a wide range of conditions. At high altitudes and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behaviour of O+ ions that are E×B-drifting through a background of neutral O, with the effect of O+ (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio ni/nn and the electrostatic field E were considered in order to investigate the change of ion behaviour with solar cycle and with altitude. For low altitudes and/or solar minimum (ni/nn≤ 10-5), the effect of self-collisions is negligible. For higher values of ni/nn, the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O+ distribution are reduced. For example, the parallel temperature Ti\\Vert increases, the perpendicular temperature Ti⊥ decreases, the temperature anisotropy approaches unity and the toroidal features of the ion distribution function become less pronounced. Also, as E increases, the ion-neutral collision rate increases, while the ion-ion collision rate decreases. Therefore, the effect of ion self-collisions is reduced. Finally, the Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high ni/nn.


2005 ◽  
Vol 12 (2) ◽  
pp. 022504 ◽  
Author(s):  
O. Ågren ◽  
N. Savenko

1997 ◽  
Vol 34-35 ◽  
pp. 617-620 ◽  
Author(s):  
Kameo Ishii ◽  
Toshiki Takahashi ◽  
Akira Abe ◽  
Nagayoshi Kikuno ◽  
Tetsuya Goto ◽  
...  

2007 ◽  
Vol 73 (6) ◽  
pp. 981-992 ◽  
Author(s):  
O. A. POKHOTELOV ◽  
O.G. ONISHCHENKO ◽  
M. A. BALIKHIN ◽  
L. STENFLO ◽  
P. K. SHUKLA

AbstractThe nonlinear theory of large-amplitude magnetosonic (MS) waves in highβ space plasmas is revisited. It is shown that solitary waves can exist in the form of ‘bright’ or ‘dark’ solitons in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion, which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived.It takes into account general plasma equilibria, such as the Dory–Guest–Harris (DGH) or Kennel–Ashour-Abdalla (KA) loss-cone equilibria, as well as distributions with a power-law velocity dependence that can be modelled by κdistributions. It is shown that in a bi-Maxwellian plasma the dispersion is negative, i.e. the phase velocity decreases with an increase of the wavenumber. This means that the solitary solution in this case has the form of a ‘bright’ soliton with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas, such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall–MHD equations are reviewed. The relevance of our theoretical results to existing satellite wave observations is outlined.


2000 ◽  
Vol 71 (6) ◽  
pp. 2329-2333 ◽  
Author(s):  
V. Malka ◽  
C. Coulaud ◽  
J. P. Geindre ◽  
V. Lopez ◽  
Z. Najmudin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document