Numerical simulation of a nonequilibrium high-frequency discharge in a converging cylindrical wave

1990 ◽  
Vol 42 (4) ◽  
pp. 442-448 ◽  
Author(s):  
I B Bokolishvili ◽  
A V Kim ◽  
G G Malinetsky ◽  
A S Petrosyan
Nature ◽  
1946 ◽  
Vol 158 (4002) ◽  
pp. 61-61 ◽  
Author(s):  
P. C. THONEMANN

Author(s):  
Kwanghyun Park ◽  
Bongsuk Kim ◽  
Jun Ni

Ultrasonic assisted friction stir welding (UaFSW) is an hybrid welding technique, where high frequency vibration is superimposed on the movement of a rotating tool. The benefit of using ultrasonic vibration in the FSW process refers to the reduction in the welding force and to the better welding quality. The UaFSW system is being developed and its mechanism needs to be understood using both the experiments and the numerical simulations. In this paper, FE simulations of FSW and UaFSW using ABAQUS/Explicit were carried out to examine plunge forces during the plunge phase of FSW and UaFSW, respectively. First, the simulations of the conventional FSW process were validated. Then, simulation of UaFSW process was performed by imposing sinusoidal horizontal ultrasonic vibrations on the tool.


Author(s):  
M. Azeredo ◽  
◽  
V. Priimenko ◽  

This work presents a mathematical algorithm for modeling the propagation of poroelastic waves. We have shown how the classical Biot equations can be put into Ursin’s form in a plane-layered 3D porous medium. Using this form, we have derived explicit for- mulas that can be used as the basis of an efficient computational algorithm. To validate the algorithm, numerical simulations were performed using both the poroelastic and equivalent elastic models. The results obtained confirmed the proposed algorithm’s reliability, identify- ing the main wave events in both low-frequency and high-frequency regimes in the reservoir and laboratory scales, respectively. We have also illustrated the influence of some physical parameters on the attenuation and dispersion of the slow wave.


Author(s):  
Doug Garrard ◽  
Milt Davis ◽  
Steve Wehofer ◽  
Gary Cole

The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet / engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.


1974 ◽  
Vol 52 (9) ◽  
pp. 813-820 ◽  
Author(s):  
René Stringat ◽  
Jean-Paul Bacci ◽  
Marie-Hélène Pischedda

The strongly perturbed 1Π–X1Σ+ system of C80Se has been observed in the emission spectrum of a high frequency discharge through selenium and carbon traces in a neon atmosphere. The analysis of five bands yields, for the molecular constants of the ground state, the values Be″ = 0.5750 cm−1, [Formula: see text], αe″ = 0.00379 cm−1, re″ = 1.676 Å, ΔG″(1/2) = 1025.64 cm−1, and ΔG″(3/2) = 1015.92 cm−1. The numerous perturbations in the 1Π state prohibit the simple evaluation of the constants of the perturbed state and of the perturbing ones.


Sign in / Sign up

Export Citation Format

Share Document