scholarly journals Non-Gaussian entangled states and quantum teleportation of Schrödinger-cat states

2015 ◽  
Vol 90 (7) ◽  
pp. 074029 ◽  
Author(s):  
Kaushik P Seshadreesan ◽  
Jonathan P Dowling ◽  
Girish S Agarwal
2011 ◽  
Vol 09 (03) ◽  
pp. 993-1003
Author(s):  
YE-QI ZHANG ◽  
JING-BO XU

We investigate the entanglement swapping of the continuous variable states by taking the pair Schrödinger cat states as the input entangled states, in which the two-mode squeezed vacuum and the pair cat states serve as the quantum channel, respectively. The entanglement of the initial states as well as the final states is analyzed by adopting the logarithmic negativity as the measure of entanglement. The quantum teleportation task by exploiting the swapped states as the quantum channel is also considered, where a coherent state serves as the target state and the average fidelity is examined.


2016 ◽  
Vol 30 (02) ◽  
pp. 1550269
Author(s):  
M. Rohith ◽  
C. Sudheesh ◽  
R. Rajeev

We study theoretically the dynamics of entangled states created in a beam splitter with a nonlinear Kerr medium placed into one input arm. Entanglement dynamics of initial classical and nonclassical states are studied and compared. Signatures of revival and fractional revival phenomena exhibited during the time evolution of states in the Kerr medium are captured in the entangled states produced by the beam splitter. Dynamics of entanglement shows local minima at the instants of fractional revivals. These minima correspond to the generation of two-component Schrödinger cat states or multi-component Schrödinger cat-like states if the initial state considered is a coherent state. Maximum entanglement is obtained at the instants of collapses of wave packets in the medium. Our analysis shows increase in entanglement with increase in the degree of nonclassicality of the initial states considered. We show that the states generated at the output of the beam splitter using initial nonclassical states are more robust against decoherence due to photon absorption by an environment than those formed by an initial classical state.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Warit Asavanant ◽  
Kan Takase ◽  
Kosuke Fukui ◽  
Mamoru Endo ◽  
Jun-ichi Yoshikawa ◽  
...  

2021 ◽  
Vol 17 (10) ◽  
pp. 1104-1108 ◽  
Author(s):  
M. Lewenstein ◽  
M. F. Ciappina ◽  
E. Pisanty ◽  
J. Rivera-Dean ◽  
P. Stammer ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Damian Kołaczek ◽  
Bartłomiej J. Spisak ◽  
Maciej Wołoszyn

AbstractThe coherent superposition of two well separated Gaussian wavepackets, with defects caused by their imperfect preparation, is considered within the phase-space approach based on the Wigner distribution function. This generic state is called the defective Schrödinger cat state due to this imperfection which significantly modifies the interference term. Propagation of this state in the phase space is described by the Moyal equation which is solved for the case of a dispersive medium with a Gaussian barrier in the above-barrier reflection regime. Formally, this regime constitutes conditions for backscattering diffraction phenomena. Dynamical quantumness and the degree of localization in the phase space of the considered state as a function of its imperfection are the subject of the performed analysis. The obtained results allow concluding that backscattering communication based on the defective Schrödinger cat states appears to be feasible with existing experimental capabilities.


Author(s):  
M. FORTUNATO ◽  
P. TOMBESI ◽  
D. VITALI ◽  
J. M. RAIMOND

Sign in / Sign up

Export Citation Format

Share Document