Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine

2009 ◽  
Vol 55 (1) ◽  
pp. 247-264 ◽  
Author(s):  
Darko Štern ◽  
Boštjan Likar ◽  
Franjo Pernuš ◽  
Tomaž Vrtovec
2016 ◽  
Vol 24 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Diana M. Molinares ◽  
Timothy T. Davis ◽  
Daniel A. Fung

OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5–S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2–S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors’ database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5–S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2–5 discs have the following mean distances: L2–3 = 16.04 mm, L3–4 = 14.21 mm, and L4–5 = 10.28 mm. The L5–S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3–4 disc in 5%, at the L-4 vertebral body in 43%, at the L4–5 disc in 11%, and at the L-5 vertebral body in 9%. The confluence of the iliac veins was found at lower levels: 45% at the L-4 level, 19.39% at the L4–5 intervertebral disc, and 34% at the L-5 vertebral body. CONCLUSIONS An oblique corridor of access to the L2–5 discs was found in 90% of the MR images (99% access to L2–3, 100% access to L3–4, and 91% access to L4–5). Access to the L5–S1 disc was also established in 69% of the MR images analyzed. The lower the confluence of iliac veins, the less probable it was that access to the L5–S1 intervertebral disc space was observed. These findings support the use of lumbar MRI as a tool to predetermine the presence of an oblique corridor for access to the L2–S1 intervertebral disc spaces prior to lumbar spine surgery.


2018 ◽  
Vol 8 (9) ◽  
pp. 1586 ◽  
Author(s):  
Sewon Kim ◽  
Won Bae ◽  
Koichi Masuda ◽  
Christine Chung ◽  
Dosik Hwang

We propose a semi-automatic algorithm for the segmentation of vertebral bodies in magnetic resonance (MR) images of the human lumbar spine. Quantitative analysis of spine MR images often necessitate segmentation of the image into specific regions representing anatomic structures of interest. Existing algorithms for vertebral body segmentation require heavy inputs from the user, which is a disadvantage. For example, the user needs to define individual regions of interest (ROIs) for each vertebral body, and specify parameters for the segmentation algorithm. To overcome these drawbacks, we developed a semi-automatic algorithm that considerably reduces the need for user inputs. First, we simplified the ROI placement procedure by reducing the requirement to only one ROI, which includes a vertebral body; subsequently, a correlation algorithm is used to identify the remaining vertebral bodies and to automatically detect the ROIs. Second, the detected ROIs are adjusted to facilitate the subsequent segmentation process. Third, the segmentation is performed via graph-based and line-based segmentation algorithms. We tested our algorithm on sagittal MR images of the lumbar spine and achieved a 90% dice similarity coefficient, when compared with manual segmentation. Our new semi-automatic method significantly reduces the user’s role while achieving good segmentation accuracy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jun Yang ◽  
Zhiyun Feng ◽  
Nian Chen ◽  
Zhenhua Hong ◽  
Yongyu Zheng ◽  
...  

Abstract Objectives To investigate the role of gravity in the sedimentation of lumbar spine nerve roots using magnetic resonance (MR) imaging of various body positions. Methods A total of 56 patients, who suffered from back pain and underwent conventional supine lumbar spine MR imaging, were selected from sanmen hospital database. All the patients were called back to our hospital to perform MR imaging in prone position or lateral position. Furthermore, the sedimentation sign (SedSign) was determined based on the suspension of the nerve roots in the dural sac on cross-sectional MR images, and 31 cases were rated as positive and another 25 cases were negative. Results The mean age of negative SedSign group was significantly younger than that of positive SedSign group (51.7 ± 8.7 vs 68.4 ± 10.5, P < 0.05). The constitutions of clinical diagnosis were significantly different between patients with a positive SedSign and those with a negative SedSign (P < 0.001). Overall, nerve roots of the vast majority of patients (48/56, 85.7%) subsided to the ventral side of the dural sac on the prone MR images, although that of 8 (14.3%) patients remain stay in the dorsal side of dural sac. Nerve roots of only one patient with negative SedSign did not settle to the ventral dural sac, while this phenomenon occurred in 7 patients in positive SedSign group (4% vs 22.6%, P < 0.001). In addition, the nerve roots of all the five patients subsided to the left side of dural sac on lateral position MR images. Conclusions The nerve roots sedimentation followed the direction of gravity. Positive SedSign may be a MR sign of lumbar pathology involved the spinal canal.


Bone ◽  
2021 ◽  
pp. 115972
Author(s):  
Abhinav Suri ◽  
Brandon C. Jones ◽  
Grace Ng ◽  
Nancy Anabaraonye ◽  
Patrick Beyrer ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jianbiao Xu ◽  
Leiming Zhang ◽  
Rongqiang Bu ◽  
Yankang Liu ◽  
Kai-Uwe Lewandrowski ◽  
...  

Abstract Background Spondylodiscitis is an unusual infectious disease, which usually originates as a pathogenic infection of intervertebral discs and then spreads to neighboring vertebral bodies. The objective of this study is to evaluate percutaneous debridement and drainage using intraoperative CT-Guide in multilevel spondylodiscitis. Methods From January 2002 to May 2017, 23 patients with multilevel spondylodiscitis were treated with minimally invasive debridement and drainage procedures in our department. The clinical manifestations, evolution, and minimally invasive debridement and drainage treatment of this refractory vertebral infection were investigated. Results Of the enrolled patients, the operation time ranged from 30 minutes to 124 minutes every level with an average of 48 minutes. Intraoperative hemorrhage was minimal. The postoperative follow-up period ranged from 12 months to 6.5 years with an average of 3.7 years. There was no reactivation of infection in the treated vertebral segment during follow-up, but two patients with fungal spinal infection continued to progress by affecting adjacent segments prior to final resolution. According to the classification system of Macnab, one patient had a good outcome at the final follow-up, and the rest were excellent. Conclusions Minimally invasive percutaneous debridement and irrigation using intraoperative CT-Guide is an effective minimally invasive method for the treatment of multilevel spondylodiscitis.


2007 ◽  
Vol 36 (12) ◽  
pp. 1147-1153 ◽  
Author(s):  
Kush Singh ◽  
Clyde A. Helms ◽  
David Fiorella ◽  
Nancy A. Major

Sign in / Sign up

Export Citation Format

Share Document