body segmentation
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 37)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 71 ◽  
pp. 103230
Author(s):  
Rao Farhat Masood ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Babar Khan ◽  
Muhammad Asad Qureshi ◽  
Taimur Hassan

2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
James D. Holmes ◽  
John R. Paterson ◽  
Diego C. García-Bellido

The exceptional fossil record of trilobites provides our best window on developmental processes in early euarthropods, but data on growth dynamics are limited. Here, we analyse post-embryonic axial growth in the Cambrian trilobite Estaingia bilobata from the Emu Bay Shale, South Australia. Using threshold models, we show that abrupt changes in growth trajectories of different body sections occurred in two phases, closely associated with the anamorphic/epimorphic and meraspid/holaspid transitions. These changes are similar to the progression to sexual maturity seen in certain extant euarthropods and suggest that the onset of maturity coincided with the commencement of the holaspid period. We also conduct hypothesis testing to reveal the likely controls of observed axial growth gradients and suggest that size may better explain growth patterns than moult stage. The two phases of allometric change in E. bilobata , as well as probable differing growth regulation in the earliest post-embryonic stages, suggest that observed body segmentation patterns in this trilobite were the result of a complex series of changing growth controls that characterized different ontogenetic intervals. This indicates that trilobite development is more complex than previously thought, even in early members of the clade.


2021 ◽  
pp. 1-26
Author(s):  
Mustafizur Rahaman ◽  
Md. Monsur Hillas ◽  
Jannatul Tuba ◽  
Jannatul Ferdous Ruma ◽  
Nahian Ahmed ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ze Lin Tan ◽  
Jing Bai ◽  
Shao Min Zhang ◽  
Fei Wei Qin

AbstractIn an image based virtual try-on network, both features of the target clothes and the input human body should be preserved. However, current techniques failed to solve the problems of blurriness on complex clothes details and artifacts on human body occlusion regions at the same time. To tackle this issue, we propose a non-local virtual try-on network NL-VTON. Considering that convolution is a local operation and limited by its convolution kernel size and rectangular receptive field, which is unsuitable for large size non-rigid transformations of persons and clothes in virtual try-on, we introduce a non-local feature attention module and a grid regularization loss so as to capture detailed features of complex clothes, and design a human body segmentation prediction network to further alleviate the artifacts on occlusion regions. The quantitative and qualitative experiments based on the Zalando dataset demonstrate that our proposed method significantly improves the ability to preserve features of bodies and clothes compared with the state-of-the-art methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254704
Author(s):  
Ijin Joo ◽  
Min-Sun Kwak ◽  
Dae Hyun Park ◽  
Soon Ho Yoon

Objective Waist circumference (WC) is a widely accepted anthropometric parameter of central obesity. We investigated a fully automated body segmentation algorithm for measuring WC on abdominal computed tomography (CT) in comparison to manual WC measurements (WC-manual) and evaluated the performance of CT-measured WC for identifying overweight/obesity. Materials and methods This retrospective study included consecutive adults who underwent both abdominal CT scans and manual WC measurements at a health check-up between January 2013 and November 2019. Mid-waist WCs were automatically measured on noncontrast axial CT images using a deep learning-based body segmentation algorithm. The associations between CT-measured WC and WC-manual was assessed by Pearson correlation analysis and their agreement was assessed through Bland-Altman analysis. The performance of these WC measurements for identifying overweight/obesity (i.e., body mass index [BMI] ≥25 kg/m2) was evaluated using receiver operating characteristics (ROC) curve analysis. Results Among 763 subjects whose abdominal CT scans were analyzed using a fully automated body segmentation algorithm, CT-measured WCs were successfully obtained in 757 adults (326 women; mean age, 54.3 years; 64 women and 182 men with overweight/obesity). CT-measured WC was strongly correlated with WC-manual (r = 0.919, p < 0.001), and showed a mean difference of 6.1 cm with limits of agreement between -1.8 cm and 14.0 cm in comparison to WC-manual. For identifying overweight/obesity, CT-measured WC showed excellent performance, with areas under the ROC curve (AUCs) of 0.960 (95% CI, 0.933–0.979) in women and 0.909 (95% CI, 0.878–0.935) in men, which were comparable to WC-manual (AUCs of 0.965 [95% CI, 0.938–0.982] and 0.916 [95% CI, 0.886–0.941]; p = 0.735 and 0.437, respectively). Conclusion CT-measured WC using a fully automated body segmentation algorithm was closely correlated with manually-measured WC. While radiation issue may limit its general use, it can serve as an adjunctive output of abdominal CT scans to identify overweight/obesity.


Sign in / Sign up

Export Citation Format

Share Document