Explicit Solutions of (2+1)-Dimensional Canonical Generalized KP, KdV, and (2+1)-Dimensional Burgers Equations with Variable Coefficients

2009 ◽  
Vol 52 (5) ◽  
pp. 784-790 ◽  
Author(s):  
Zhang Lin-Lin ◽  
Liu Xi-Qiang
1999 ◽  
Vol 66 (3) ◽  
pp. 598-606 ◽  
Author(s):  
Xiangzhou Zhang ◽  
Norio Hasebe

An exact elasticity solution is developed for a radially nonhomogeneous hollow circular cylinder of exponential Young’s modulus and constant Poisson’s ratio. In the solution, the cylinder is first approximated by a piecewise homogeneous one, of the same overall dimension and composed of perfectly bonded constituent homogeneous hollow circular cylinders. For each of the constituent cylinders, the solution can be obtained from the theory of homogeneous elasticity in terms of several constants. In the limit case when the number of the constituent cylinders becomes unboundedly large and their thickness tends to infinitesimally small, the piecewise homogeneous hollow circular cylinder reverts to the original nonhomogeneous one, and the constants contained in the solutions for the constituent cylinders turn into continuous functions. These functions, governed by some systems of first-order ordinary differential equations with variable coefficients, stand for the exact elasticity solution of the nonhomogeneous cylinder. Rigorous and explicit solutions are worked out for the ordinary differential equation systems, and used to generate a number of numerical results. It is indicated in the discussion that the developed method can also be applied to hollow circular cylinders with arbitrary, continuous radial nonhomogeneity.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1366 ◽  
Author(s):  
Ivan Matychyn

This paper deals with the initial value problem for linear systems of fractional differential equations (FDEs) with variable coefficients involving Riemann–Liouville and Caputo derivatives. Some basic properties of fractional derivatives and antiderivatives, including their non-symmetry w.r.t. each other, are discussed. The technique of the generalized Peano–Baker series is used to obtain the state-transition matrix. Explicit solutions are derived both in the homogeneous and inhomogeneous case. The theoretical results are supported by examples.


1996 ◽  
Vol 51 (3) ◽  
pp. 175-178
Author(s):  
Bo Tian ◽  
Yi-Tian Gao

Able to realistically model various physical situations, the variable-coefficient generalizations of the celebrated Kadmotsev-Petviashvili equation are of current interest in physical and mathematical sciences. In this paper, we make use of both the truncated Painleve expansion and symbolic computation to obtain an auto-Bäcklund transformation and certain soliton-typed explicit solutions for a general Kadomtsev-Petviashvili equation with variable coefficients.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gang-Wei Wang ◽  
Tian-Zhou Xu

The simplified modified Kawahara equation with variable coefficients is studied by using Lie symmetry method. Then we obtain the corresponding Lie algebra, optimal system, and the similarity reductions. At last, we also give some new explicit solutions for some special forms of the equations.


2020 ◽  
Vol 23 (3) ◽  
pp. 753-763
Author(s):  
Ivan Matychyn ◽  
Viktoriia Onyshchenko

AbstractThe paper deals with the initial value problem for linear systems of FDEs with variable coefficients involving Riemann–Liouville derivatives. The technique of the generalized Peano–Baker series is used to obtain the state-transition matrix. Explicit solutions are derived both in the homogeneous and inhomogeneous case. The theoretical results are supported by an example.


Open Physics ◽  
2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Guy Kol ◽  
Sifeu Kingni ◽  
Paul Woafo

AbstractIn this paper, we theoretically investigate the generation of optical rogue waves from a Lugiato-Lefever equation with variable coefficients by using the nonlinear Schrödinger equation-based constructive method. Exact explicit rogue-wave solutions of the Lugiato-Lefever equation with constant dispersion, detuning and dissipation are derived and presented. The bright rogue wave, intermediate rogue wave and the dark rogue wave are obtained by changing the value of one parameter in the exact explicit solutions corresponding to the external pump power of a continuous-wave laser.


Sign in / Sign up

Export Citation Format

Share Document