MHD Stagnation Point Flow of Williamson Fluid over a Stretching Cylinder with Variable Thermal Conductivity and Homogeneous/Heterogeneous Reaction

2017 ◽  
Vol 67 (6) ◽  
pp. 688 ◽  
Author(s):  
M. Bilal ◽  
M. Sagheer ◽  
S. Hussain ◽  
Y. Mehmood
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yu Bai ◽  
Qing Wang ◽  
Yan Zhang

Purpose This paper aims to examine the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid along a stretching sheet. The thermal conductivity is taken in a temperature-dependent fashion. With the aid of Cattaneo–Christov double-diffusion theory, relaxation-retardation double-diffusion model is advanced, which considers not only the effect of relaxation time but also the influence of retardation time. Convective heat transfer is not ignored. Additionally, experiments verify that with sodium carboxymethylcellulose (CMC) solutions as base fluid, not only the flow curve conforms to Oldroyd-B model but also thermal conductivity decreases linearly with the increase of temperature. Design/methodology/approach The suitable pseudo similarity transformations are adopted to address partial differential equations to ordinary differential equations, which are computed analytically through homotopy analysis method (HAM). Findings It is worth noting that the increase of stagnation-point parameter diminishes momentum loss, so that the velocity enlarges, which makes boundary layer thickness thinner. With the increase of thermal retardation time parameter, the nanofluid temperature rises that implies heat penetration depth boosts up and the additional time required for nanofluid to heat transfer to surrounding nanoparticles is less, which is similar to the effects of concentration retardation time parameter on concentration field. Originality/value This paper aims to explore the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid with variable thermal conductivity and relaxation-retardation double-diffusion model.


2020 ◽  
Vol 9 (1) ◽  
pp. 338-351
Author(s):  
Usha Shankar ◽  
N. B. Naduvinamani ◽  
Hussain Basha

AbstractA two-dimensional mathematical model of magnetized unsteady incompressible Williamson fluid flow over a sensor surface with variable thermal conductivity and exterior squeezing with viscous dissipation effect is investigated, numerically. Present flow model is developed based on the considered flow geometry. Effect of Lorentz forces on flow behaviour is described in terms of magnetic field and which is accounted in momentum equation. Influence of variable thermal conductivity on heat transfer is considered in the energy equation. Present investigated problem gives the highly complicated nonlinear, unsteady governing flow equations and which are coupled in nature. Owing to the failure of analytical/direct techniques, the considered physical problem is solved by using Runge-Kutta scheme (RK-4) via similarity transformations approach. Graphs and tables are presented to describe the physical behaviour of various control parameters on flow phenomenon. Temperature boundary layer thickens for the amplifying value of Weissenberg parameter and permeable velocity parameter. Velocity profile decreased for the increasing squeezed flow index and permeable velocity parameter. Increasing magnetic number increases the velocity profile. Magnifying squeezed flow index magnifies the magnitude of Nusselt number. Also, RK-4 efficiently solves the highly complicated nonlinear complex equations that are arising in the fluid flow problems. The present results in this article are significantly matching with the published results in the literature.


Sign in / Sign up

Export Citation Format

Share Document