Saturable Nonlinearity in Photovoltaic-Photorefractive Crystals Under Open-circuit Condition

2000 ◽  
Vol 17 (11) ◽  
pp. 804-805 ◽  
Author(s):  
Guo Ru ◽  
Ling Zhen-Fang ◽  
Chen Xiao-Hu ◽  
Zhang Guo-Quan ◽  
Zhang Xin-Zheng ◽  
...  
2000 ◽  
Vol 180 (1-3) ◽  
pp. 147-151 ◽  
Author(s):  
Ru Guo ◽  
Zhenfang Ling ◽  
Simin Liu ◽  
Jingjun Xu ◽  
Xingzheng Zhang ◽  
...  

1980 ◽  
Vol 239 (3) ◽  
pp. F215-F221 ◽  
Author(s):  
M. J. Welsh ◽  
J. H. Widdicombe

The pathways of ion movement across canine tracheal epithelium, a Cl-secreting tissue, were examined by three techniques. First, the measurement of simultaneous, unidirectional fluxes of Na or Cl and mannitol, a large hydrophilic molecule that serves as a marker of the paracellular pathway, indicated that a significant fraction of both the Na flux from submucosa to mucosa (J Na sm) and the flux of Cl from mucosa to submucosa (J Cl ms) traverse the cellular pathway. The ratio of the Na-to-Cl diffusion coefficients through the paracellular pathway was 0.23, in contrast to the free solution ratio of 0.63. Second, in voltage-clamp experiments we examined the effect of transepithelial voltage differences on the unidirectional fluxes of Na and Cl. The results agree with the previous findings, suggesting that there are voltage-independent, or transcellular, backfluxes of Na and Cl, and that the relative permeability of Na to Cl through the voltage-dependent (presumably paracellular) pathway was 0.28. Third, measurement of transepithelial diffusion potentials gave a Na-to-Cl permeability ratio of 0.31 +/- 0.02 (mean +/- SE). These results suggest that there are significant transcellular backfluxes of Na and Cl and that the paracellular pathway in the canine trachea is anion selective. An anion-selective pathway would tend to shunt the secreted Cl back through the paracellular pathway, thus minimizing the net ion and fluid movement across the tissue in the open-circuit condition.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 842
Author(s):  
Yiwei Hu ◽  
Jing Zheng ◽  
Hai Huang

Vibration analysis is one of the important tools for the transformer winding faults diagnosis. Previous researchers have proved that the vibration spatial distribution of the winding is significantly influenced by the winding defects for the open circuit condition. In order to study the effects of the loading current on the winding vibrations under different mechanical conditions, experiments were designed and operated on a three-phase transformer winding to analyze the winding vibration distribution under different winding defect cases. Further, to study to what extent the mechanical defects and the loading current influence characteristics of the vibration distribution on the tank, the tank vibration distribution under various winding defects and different loading currents were also measured and discussed. In addition, the possibility of detection of transformer winding faults based on tank vibration spatial distribution characteristics was also discussed.


2014 ◽  
Vol 960-961 ◽  
pp. 1336-1341
Author(s):  
Xue Jing Liu ◽  
Gong Zhang ◽  
Yong Quan Wang ◽  
Shu Hai Jia

As a member of Electroactive Polymers (EAPs), dielectric elastomer (DE) has shown considerable potential for energy harvesting applications. After the basic principle of DE energy harvesting is studied, a multi-layer DE generator using VHB 4910 (3M, USA) is specially designed and fabricated. Then, an improved energy harvesting circuit is designed to make use of harvested electrical energy. Finally, energy harvesting experiments are implemented under the constant charge (open-circuit) condition and the results prove that the multi-layer DE generator fabricated can produce enough energy to constantly drive a light emitting diode. The harvested electrical energy has good consistent with generated electrical energy and the maximum energy harvesting efficiency ηh can reach 89%.


1967 ◽  
Vol 89 (3) ◽  
pp. 323-328 ◽  
Author(s):  
J. Prakash

A theoretical analysis is made of a composite slider bearing using an electrically conducting lubricant such as a liquid metal in the presence of a magnetic field applied perpendicular to the bearing surfaces. Two solutions are presented for large and small values of Hartmann number. It is found that for large Hartmann number significant increase in load capacity can be obtained even under open circuit condition. Short circuit condition results in zero load capacity, under the approximation considered. At small Hartmann number only a slight increase occurs under open circuit condition and external power must be supplied to get a significant increase. It is seen that a magnetohydrodynamic composite bearing does not always give an increase in load capacity as compared to an equivalent inclined slider bearing, as is the case with classical composite bearing. There is a critical Hartmann number depending on the parameters of the problem, above which MHD effects reduce the load capacity as compared to the case of an equivalent inclined slider bearing. It is also observed that the frictional drag on the bearing can be made zero by supplying electrical energy through the electrodes to the fluid.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1583 ◽  
Author(s):  
Ruijuan Shi ◽  
Wei Chen ◽  
Wenli Hu ◽  
Junlong Liu ◽  
Hongtao Wang

SrCeO3 and SrCe0.9Sm0.1O3-α were synthesized using a high-temperature solid-state reaction method using Sm2O3, SrCO3, CeO2 as precursors, then the SrCe0.9Sm0.1O3-α-NaCl-KCl composite electrolyte was fabricated by compounding SrCe0.9Sm0.1O3-α with NaCl-KCl and sintering it at a lower temperature (750 °C) than that of a single SrCeO3 material (1540 °C). The phase and microstructure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The conductivities of the samples were measured in dry nitrogen atmosphere using electrochemical analyzer. The conductivities of the SrCeO3, SrCe0.9Sm0.1O3-α and SrCe0.9Sm0.1O3-α-NaCl-KCl at 700 °C were 2.09 × 10−5 S·cm−1, 1.82 × 10−3 S·cm−1 and 1.43 × 10−1 S·cm−1 respectively. The conductivities of SrCe0.9Sm0.1O3-α-NaCl-KCl composite electrolyte are four orders of magnitude higher than those of SrCeO3 and two orders of magnitude higher than those of SrCe0.9Sm0.1O3-α. The result of logσ ~ logpO2 plot indicates that SrCe0.9Sm0.1O3-α-NaCl-KCl is almost a pure ionic conductor. The electrolyte resistance and the polarization resistance of the H2/O2 fuel cell based on SrCe0.9Sm0.1O3-α-NaCl-KCl composite electrolyte under open-circuit condition were 1.0 Ω·cm2 and 0.2 Ω·cm2 respectively. Further, the obtained maximum power density at 700 °C was 182 mW·cm−2.


Sign in / Sign up

Export Citation Format

Share Document