Two-Dimensional Rayleigh–Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers

2010 ◽  
Vol 27 (2) ◽  
pp. 025203 ◽  
Author(s):  
Wang Li-Feng ◽  
Ye Wen-Hua ◽  
Li Ying-Jun
1998 ◽  
Vol 58 (5) ◽  
pp. 6861-6864 ◽  
Author(s):  
Xiaobo Nie ◽  
Yue-Hong Qian ◽  
Gary D. Doolen ◽  
Shiyi Chen

2009 ◽  
Vol 696 (1) ◽  
pp. 749-759 ◽  
Author(s):  
C. C. Kuranz ◽  
R. P. Drake ◽  
E. C. Harding ◽  
M. J. Grosskopf ◽  
H. F. Robey ◽  
...  

2018 ◽  
Vol 838 ◽  
pp. 320-355 ◽  
Author(s):  
R. V. Morgan ◽  
W. H. Cabot ◽  
J. A. Greenough ◽  
J. W. Jacobs

Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number, $A=(\unicode[STIX]{x1D70C}_{2}-\unicode[STIX]{x1D70C}_{1})/(\unicode[STIX]{x1D70C}_{2}+\unicode[STIX]{x1D70C}_{1})$, where $\unicode[STIX]{x1D70C}_{2}$ and $\unicode[STIX]{x1D70C}_{1}$ are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of $A=0.49$, $A=0.63$, $A=0.82$ and $A=0.94$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber, $k=2\unicode[STIX]{x03C0}/\unicode[STIX]{x1D706}=0.247~\text{mm}^{-1}$, experiments and simulations, where $\unicode[STIX]{x1D706}$ is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
Sk. Mashfiqur Rahman ◽  
Omer San

In this paper, we investigate the performance of a relaxation filtering approach for the Euler turbulence using a central seven-point stencil reconstruction scheme. High-resolution numerical experiments are performed for both multi-mode and single-mode


2003 ◽  
Vol 21 (3) ◽  
pp. 455-461 ◽  
Author(s):  
S.V. WEBER ◽  
G. DIMONTE ◽  
M.M. MARINAK

We have performed simulations of the evolution of the turbulent Rayleigh–Taylor instability with an arbitrary Lagrange–Eulerian code. The problem specification was defined by Dimonteet al.(2003) for the “alpha group” code intercomparison project. Perfect γ = 5/3 gases of densities 1 and 3 g/cm3are accelerated by constant gravity. The nominal problem uses a 2562× 512 mesh with initial random multiwavelength interface perturbations. We have also run three-dimensional problems with smaller meshes and two-dimensional (2D) problems of several mesh sizes. Under-resolution lowered linear growth rates of the seed modes to 5-60% of the analytic values, depending on wavelength and orientation to the mesh. However, the mix extent in the 2D simulations changed little with grid refinement. Simulations without interface reconstruction gave penetration only slightly reduced from the case with interface reconstruction. Energy dissipation differs little between the two cases. The slope of the penetration distance versus time squared, corresponding to the α parameter inh= αAgt2, decreases with increasing time in these simulations. The slope, α, is consistent with the linear electric motor data of Dimonte and Schneider (2000), but the growth is delayed in time.


Sign in / Sign up

Export Citation Format

Share Document