scholarly journals Crystallization Behavior of Fe 50− x Cr 15 Mo 14 C 15 B 6 M x ( x = 0, 2 and M = Y, Gd) Bulk Metallic Glasses and Ribbons by in situ High Temperature X-Ray Diffraction

2012 ◽  
Vol 29 (10) ◽  
pp. 108103 ◽  
Author(s):  
Badis Bendjemil ◽  
Abderrezak Bouchareb ◽  
Ahmed Belbah ◽  
Jamel Bougdira ◽  
Rafael Piccin ◽  
...  
2009 ◽  
Vol 94 (1) ◽  
pp. 011911 ◽  
Author(s):  
X. D. Wang ◽  
J. Bednarcik ◽  
H. Franz ◽  
H. B. Lou ◽  
Z. H. He ◽  
...  

2007 ◽  
Vol 91 (8) ◽  
pp. 081913 ◽  
Author(s):  
X. D. Wang ◽  
J. Bednarcik ◽  
K. Saksl ◽  
H. Franz ◽  
Q. P. Cao ◽  
...  

2008 ◽  
Vol 23 (4) ◽  
pp. 941-948 ◽  
Author(s):  
Z.W. Zhu ◽  
S.J. Zheng ◽  
H.F. Zhang ◽  
B.Z. Ding ◽  
Z.Q. Hu ◽  
...  

Different bulk metallic glasses (BMGs) were prepared in ductile Cu47.5Zr47.5Al5, Zr62Cu15.4Ni12.6Al10, and brittle Zr55Ni5Al10Cu30 alloys by controlling solidification conditions. The achieved microstructures were characterized by x-ray diffraction, differential scanning calorimetry, transmission electron microscopy, and synchrotron- based high-energy x-ray diffraction. Monolithic BMGs obtained by high-temperature injection casting are brittle, while BMGs bearing some nanocrystals with the size of 3 to 7 nm and 2 to 4 nm, obtained by low-temperature injection casting and in situ suction casting, respectively, exhibit good plasticity. It indicates that the microstructures of BMGs are closely affected by the solidification conditions. Controlling the solidification conditions could improve the plasticity of BMGs.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 729
Author(s):  
Junhyub Jeon ◽  
Namhyuk Seo ◽  
Hwi-Jun Kim ◽  
Min-Ha Lee ◽  
Hyun-Kyu Lim ◽  
...  

Fe-based bulk metallic glasses (BMGs) are a unique class of materials that are attracting attention in a wide variety of applications owing to their physical properties. Several studies have investigated and designed the relationships between alloy composition and thermal properties of BMGs using an artificial neural network (ANN). The limitation of the wide-scale use of these models is that the required composition is yet to be found despite numerous case studies. To address this issue, we trained an ANN to design Fe-based BMGs that predict the thermal properties. Models were trained using only the composition of the alloy as input and were created from a database of more than 150 experimental data of Fe-based BMGs from relevant literature. We adopted these ANN models to design BMGs with thermal properties to satisfy the intended purpose using particle swarm optimization. A melt spinner was employed to fabricate the designed alloys. X-ray diffraction and differential thermal analysis tests were used to evaluate the specimens.


2006 ◽  
Vol 70 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Tomonori Nambu ◽  
Nobue Shimizu ◽  
Hisakazu Ezaki ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

2014 ◽  
Vol 126 (1) ◽  
pp. 66-67
Author(s):  
S. Michalik ◽  
J. Bednarcik ◽  
P. Pawlik ◽  
R. Matija ◽  
P. Sovak

2008 ◽  
Vol 452 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Qiuguo Xiao ◽  
Ling Huang ◽  
Hui Ma ◽  
Xinhua Zhao

Sign in / Sign up

Export Citation Format

Share Document