Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap

2020 ◽  
Vol 37 (5) ◽  
pp. 053701 ◽  
Author(s):  
Ji Li ◽  
Liang Chen ◽  
Yi-He Chen ◽  
Zhi-Chao Liu ◽  
Hang Zhang ◽  
...  
2018 ◽  
Vol 51 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Erick A. Perez-Alday ◽  
Jason A. Thomas ◽  
Muammar Kabir ◽  
Golriz Sedaghat ◽  
Nichole Rogovoy ◽  
...  

Geophysics ◽  
1977 ◽  
Vol 42 (5) ◽  
pp. 1006-1019 ◽  
Author(s):  
Jeffrey J. Daniels

The three‐dimensional induced‐polarization and resistivity‐modeling problem for buried source and receiver electrodes is solved by using a modified form of Barnett’s surface‐integral technique originally developed for surface‐electrode configurations. Six different buried electrode configurations are considered in this study: three types of hole‐to‐hole configurations, hole‐to‐surface and surface‐to‐hole configurations, and the single hole (bipole‐bipole) configuration. Results show there is no “best” method for all situations encountered in the field. The choice of method depends upon depth of the body, spacing of drill holes, and electrical properties of the body. In hole‐to‐hole measurements, the geometric factor (necessary for the computation of the apparent resistivity) becomes infinitely large or infinitely small whenever the receiving bipole is placed at a depth so that it lies on a zero equipotential surface. This leads to the formation of apparent resistivity anomalies that are extremely sensitive to the presence of the body but that are also complicated and not easily correlated with the position of the body. It is shown that diagnostic and easily interpretable anomalies are obtained by selecting the proper source‐receiver configurations.


Geophysics ◽  
1973 ◽  
Vol 38 (3) ◽  
pp. 513-529 ◽  
Author(s):  
Donald D. Snyder ◽  
Richard M. Merkel

The IP response and the apparent resistivity resulting from a buried current pole in the presence of a stratigraphic target and a three‐dimensional target have been studied. The targets were modeled using a layered model to simulate the stratigraphic target and a buried sphere model to simulate the three‐dimensional target. The results show that there is a substantial increase in the response of the target measured at the surface for current electrode depths of greater than half the depth to the top of the target. A larger anomalous response is of particular importance when dealing with deeply buried targets from which little or no response is measured using conventional surface electrode methods. Furthermore, the results indicate that a survey around a drill hole containing a current electrode can be used to outline mineralization in the immediate vicinity of the drill hole. Some empirical observations resulting from our study are presented which relate the lateral offset of the target from the drill hole and its depth to characteristics of the anomaly pattern as measured on the surface.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document