scholarly journals Three-dimensional gravity, point particles and Liouville theory

2001 ◽  
Vol 18 (7) ◽  
pp. 1291-1304 ◽  
Author(s):  
Kirill Krasnov
2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kevin Nguyen

Abstract The generating functional of stress tensor correlation functions in two-dimensional conformal field theory is the nonlocal Polyakov action, or equivalently, the Liouville or Alekseev-Shatashvili action. I review its holographic derivation within the AdS3/CFT2 correspondence, both in metric and Chern-Simons formulations. I also provide a detailed comparison with the well-known Hamiltonian reduction of three-dimensional gravity to a flat Liouville theory, and conclude that the two results are unrelated. In particular, the flat Liouville action is still off-shell with respect to bulk equations of motion, and simply vanishes in case the latter are imposed. The present study also suggests an interesting re-interpretation of the computation of black hole spectral statistics recently performed by Cotler and Jensen as that of an explicit averaging of the partition function over the boundary source geometry, thereby providing potential justification for its agreement with the predictions of a random matrix ensemble.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2006 ◽  
Vol 23 (9) ◽  
pp. 1249-1269 ◽  
Author(s):  
Yu-Heng Tseng ◽  
David E. Dietrich

Abstract A purely z-coordinate Dietrich/Center for Air Sea Technology (DieCAST) ocean model is applied to the Dynamics of Overflow Mixing and Entrainment (DOME) idealized bottom density current problem that is patterned after the Denmark Strait. The numerical results show that the background viscosity plays a more important role than the chosen coordinate system in the entrainment and mixing if the background viscosity is not small enough. Both higher horizontal viscosity and coarser resolution leads to slower along-slope propagation. Reducing vertical mixing parameterization also leads to slower along-slope propagation with thicker plume size vertically. The simulation gives consistent results for the moderate- and fine-resolution runs. At a very coarse grid the dense water descends more slowly and is mainly dominated by diffusion. Time-averaged downstream transport and entrainment are not very sensitive to viscosity after the flow reaches its quasi-steady status. However, more realistic eddies and flow structures are found in low-viscosity runs. The results show good convergence of the resolved flow as expected and clarify the effects of numerical dissipation/mixing on overflow modeling. Larger numerical dissipation is not required nor recommended in z-coordinate models.


1997 ◽  
Vol 129 (2) ◽  
pp. 355-367 ◽  
Author(s):  
T. P. Yegorova ◽  
V. I. Starostenko ◽  
V. G. Kozlenko ◽  
N. I. Pavlenkova

Sign in / Sign up

Export Citation Format

Share Document