scholarly journals Numerical study of the semiclassical limit of the Davey–Stewartson II equations

Nonlinearity ◽  
2014 ◽  
Vol 27 (9) ◽  
pp. 2177-2214 ◽  
Author(s):  
C Klein ◽  
K Roidot
Author(s):  
T. Grava ◽  
C. Klein ◽  
G. Pitton

A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev–Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.


2008 ◽  
Vol 05 (03) ◽  
pp. 569-587 ◽  
Author(s):  
SHI JIN ◽  
XIAOMEI LIAO ◽  
XU YANG

In this paper, we numerically study the semiclassical limit of the Schrödinger–Poisson equations as a selection principle for the weak solution of the Vlasov–Poisson in one space dimension. Our numerical results show that this limit gives the weak solution that agrees with the zero diffusion limit of the Fokker–Planck equation. We also numerically justify the multivalued solution given by a moment system of the Vlasov–Poisson equations as the semiclassical limit of the Schrödinger–Poisson equations.


1996 ◽  
Vol 89 (4) ◽  
pp. 1203-1207
Author(s):  
S. BONELLA ◽  
G. CICCOTTI ◽  
D.F. COKER

1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

Sign in / Sign up

Export Citation Format

Share Document