On the electrostatic deceleration of argon atoms in high Rydberg states by time-dependent inhomogeneous electric fields

2005 ◽  
Vol 38 (11) ◽  
pp. 1623-1636 ◽  
Author(s):  
E Vliegen ◽  
F Merkt
1991 ◽  
Vol 1 (8) ◽  
pp. 875-897 ◽  
Author(s):  
P. F. Brevet ◽  
Ch. Bordas ◽  
M. Broyer ◽  
G. Jalbert ◽  
P. Labastie

1967 ◽  
Vol 45 (24) ◽  
pp. 3143-3151 ◽  
Author(s):  
T. Schaefer ◽  
F. Hruska ◽  
H. M. Hutton

The fluorine and proton chemical shifts in some geminally disubstituted vinylidene fluorides and ethylenes are discussed. For these compounds, at least, there are difficulties with an interpretation based on intramolecular time-dependent electric fields. On the other hand, the shifts correlate with the inverse ionization potentials of the substituents, indicating a paramagnetic effect arising from the second term in Ramsey's expression. It is suggested that the effect operates via the bonds and not across space. Methyl proton shifts in a series of substituted methyl compounds of group IV, V, and VI elements show similar correlations. A practical application of the correlation to spectral analysis problems is given.


1997 ◽  
Vol 488 ◽  
Author(s):  
S. Grossmann ◽  
T. Weyrauch ◽  
W. Haase

AbstractWe report on a method to investigate the inhomogeneous distribution of an electric dc field in multilayer polymer stacks. In situ electroabsorption (EA) measurements are applied in order to estimate the local electric fields in double layer polymer films. The observed time dependent behaviour is compared with a model equivalent circuit. The results indicate that besides the relation of ohmic resistivities and capacities of the different polymer layers in the investigated systems also the influence of the electric properties of polymer/electrode and polymer/polymer interfaces must be considered.


2013 ◽  
Vol 29 (8) ◽  
pp. 085012 ◽  
Author(s):  
Tadayoshi Adachi ◽  
Yuko Fujiwara ◽  
Atsuhide Ishida

2004 ◽  
Vol 69 (8) ◽  
Author(s):  
Ivo Souza ◽  
Jorge Íñiguez ◽  
David Vanderbilt

Particles ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 208-230 ◽  
Author(s):  
Stanislav A. Smolyansky ◽  
Anatolii D. Panferov ◽  
David B. Blaschke ◽  
Narine T. Gevorgyan

On the basis of the well-known kinetic description of e − e + vacuum pair creation in strong electromagnetic fields in D = 3 + 1 QED we construct a nonperturbative kinetic approach to electron-hole excitations in graphene under the action of strong, time-dependent electric fields. We start from the simplest model of low-energy excitations around the Dirac points in the Brillouin zone. The corresponding kinetic equations are analyzed by nonperturbative analytical and numerical methods that allow to avoid difficulties characteristic for the perturbation theory. We consider different models for external fields acting in both, one and two dimensions. In the latter case we discuss the nonlinear interaction of the orthogonal currents in graphene which plays the role of an active nonlinear medium. In particular, this allows to govern the current in one direction by means of the electric field acting in the orthogonal direction. Investigating the polarization current we detected the existence of high frequency damped oscillations in a constant external electric field. When the electric field is abruptly turned off residual inertial oscillations of the polarization current are obtained. Further nonlinear effects are discussed.


Sign in / Sign up

Export Citation Format

Share Document