Low-density, one-dimensional quantum gases in the presence of a localized attractive potential

2008 ◽  
Vol 41 (21) ◽  
pp. 215301 ◽  
Author(s):  
J Goold ◽  
D O'Donoghue ◽  
Th Busch
2008 ◽  
Vol 77 (1) ◽  
Author(s):  
P. Pedri ◽  
S. De Palo ◽  
E. Orignac ◽  
R. Citro ◽  
M. L. Chiofalo

2012 ◽  
Vol 26 (27) ◽  
pp. 1250178 ◽  
Author(s):  
JUN YAN

The phase structures of one-dimensional quantum sine-Gordon–Thirring model with N-impurities coupling are studied in this paper. The effective actions at finite temperature are derived by means of the perturbation and non-perturbation functional integrals method. The stability of coexistence phase is analyzed respectively in the weak and strong coupling case. It is shown that the coexistence phase is not stable when fermions have an attractive potential g < 0, and the stable coexistence phase can form when fermions have an exclude potential g > 0.


2004 ◽  
Vol 70 (6) ◽  
Author(s):  
S. Giovanazzi ◽  
C. Farrell ◽  
T. Kiss ◽  
U. Leonhardt

2008 ◽  
Vol 17 (10) ◽  
pp. 2110-2117 ◽  
Author(s):  
P. LECHEMINANT ◽  
P. AZARIA ◽  
E. BOULAT ◽  
S. CAPPONI ◽  
G. ROUX ◽  
...  

We investigate the possible formation of a molecular condensate, which might be, for instance, the analogue of the alpha condensate of nuclear physics, in the context of multicomponent cold atoms fermionic systems. A simple paradigmatic model of N-component fermions with contact interactions loaded into a one-dimensional optical lattice is studied by means of low-energy and numerical approaches. For attractive interaction, a quasi-long-range molecular superfluid phase, formed from bound-states made of N fermions, emerges at low density. We show that trionic and quartetting phases, respectively for N = 3,4, extend in a large domain of the phase diagram and are robust against small symmetry-breaking perturbations.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Liming Guan ◽  
Xiaoling Cui ◽  
Ran Qi ◽  
Hui Zhai

Author(s):  
Ladislav Šamaj

Introduction to integrable many-body systems IThis is the first volume of a three-volume introductory course about integrable (exactly solvable) systems of interacting bodies. The aim of the course is to derive and analyze, on an elementary mathematical and physical level, the Bethe ansatz solutions, ground-state properties and the thermodynamics of integrable many-body systems in many domains of physics: Nonrelativistic one-dimensional continuum Fermi and Bose gases; One-dimensional quantum models of condensed matter physics like the Heisenberg, Hubbard and Kondo models; Relativistic models of the (1+1)-dimensional Quantum Field Theory like the Luttinger model, the sine-Gordon model and its fermionic analog the Thirring model; Two-dimensional classical models, especially the symmetric Coulomb gas. In the first part of this volume, we deal with nonrelativistic one-dimensional continuum Fermi and Bose quantum gases of spinless (identical) particles with specific types of pairwise interactions like the short-range δ-function and hard-core interactions, and the long-range 1/


Sign in / Sign up

Export Citation Format

Share Document