Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage

2011 ◽  
Vol 22 (10) ◽  
pp. 105901 ◽  
Author(s):  
ChaBum Lee ◽  
Gyu Ha Kim ◽  
Sun-Kyu Lee
2016 ◽  
Vol 53 (9) ◽  
pp. 090003
Author(s):  
杨婧 Yang Jing ◽  
冯其波 Feng Qibo ◽  
李家琨 Li Jiakun

Author(s):  
Wen-Yuh Jywe ◽  
Chien-Hung Liu ◽  
Sheng-Chung Tzeng ◽  
Po Chou ◽  
Chu-Wei Lin

A high precision six-degree-of-freedom measuring system is developed in this paper for the motion measurement of a linear stage. It integrates a miniature dual-beam fiber coupled laser interferometer with the multiple optical paths and quadrant detectors to be capable of measuring six-degree-of-freedom motion errors. The proposed measuring method provides rapid performance, simplicity of setup, and pre-process verification of a linear positioning stage. The experimental setup and algorithm for the error verification are presented in the paper. The measuring range of the proposed measuring system is ±40μm for straightness and 40 arc sec for pitch, roll and yaw. Within the range of ±40μm and 40 arc sec, it has been found that the system’s resolution and accuracy of measuring straightness error components are about 0.04 μm and ±0.06 μm, respectively. The resolution and accuracy of measuring pitch and yaw angular error components are about 0.06 arc sec and ±0.8 arc sec, respectively. The resolution and accuracy of measuring roll angular error are about 0.05 arc sec and ±0.07 arc sec, respectively.


2016 ◽  
Vol 87 (6) ◽  
pp. 065109 ◽  
Author(s):  
Xiangzhi Yu ◽  
Steven R. Gillmer ◽  
Shane C. Woody ◽  
Jonathan D. Ellis

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3875 ◽  
Author(s):  
Chien-Sheng Liu ◽  
Yu-Fan Pu ◽  
Yu-Ta Chen ◽  
Yong-Tai Luo

This study designs and characterizes a novel precise measurement system for simultaneously measuring six-degree-of-freedom geometric motion errors of a long linear stage of a machine tool. The proposed measurement system is based on a method combined with the geometrical optics method and laser interferometer method. In contrast to conventional laser interferometers using only the interferometer method, the proposed measurement system can simultaneously measure six-degree-of-freedom geometric motion errors of a long linear stage with lower cost and faster operational time. The proposed measurement system is characterized numerically using commercial software ZEMAX and mathematical modeling established by using a skew-ray tracing method, a homogeneous transformation matrix, and a first-order Taylor series expansion. The proposed measurement system is then verified experimentally using a laboratory-built prototype. The experimental results show that, compared to conventional laser interferometers, the proposed measurement system better achieves the ability to simultaneously measure six-degree-of-freedom geometric errors of a long linear stage (a traveling range of 250 mm).


Sign in / Sign up

Export Citation Format

Share Document