Review on Multi-Degree-of-Freedom Motion Error Measurement Methods for Rotary-Axis Laser

2016 ◽  
Vol 53 (9) ◽  
pp. 090003
Author(s):  
杨婧 Yang Jing ◽  
冯其波 Feng Qibo ◽  
李家琨 Li Jiakun
2018 ◽  
Vol 8 (11) ◽  
pp. 2232 ◽  
Author(s):  
Chuanchen Bao ◽  
Qibo Feng ◽  
Jiakun Li

Error measurement of a rotary axis is the key to error compensation and to improving motion accuracy. However, only a few instruments can measure all the motion errors of a rotary axis. In this paper, a device based on laser collimation and laser interferometry was introduced for simultaneous measurement of all six degrees-of-freedom motion errors of a rotary axis. Synchronous rotation of the target and reference rotary axes was achieved by developing a proportional–integral–derivative algorithm. An error model for the measuring device was established using a homogeneous transformation matrix. The influences of installation errors, manufacturing errors, and error crosstalk were studied in detail, and compensation methods for them were proposed. After compensation, the repeatability of axial and radial motion errors was significantly improved. The repeatability values of angular positioning error and of tilt motion error around the y axis and x axis were 28.0″, 2.8″, and 3.9″. The repeatability values of translational motion errors were less than 2.8 μm. The comparison experiments show that the comparison errors of angular positioning error and tilt motion error around the y axis were 2.3″ and 2.9″, respectively. These results demonstrate the effectiveness of our method and the error compensation model.


Author(s):  
Yuqing Zhou ◽  
Xuesong Mei ◽  
Gedong Jiang ◽  
Nuogang Sun ◽  
Bai Shao

Simultaneous rotary-translational (R-T) axis motion error has significant influence on multi-axis machine tool precision. To improve multi-axis machine tool precision, axis motion error measurement and trace method are investigated in this study. A sensorless R-T axis motion error measurement and trace technology based on virtual bar is proposed. Firstly, the fundamental sensorless test principle is discussed. Then, the virtual-bar-based test path of a circular test though a rotary axis and two translational axes motion is scheduled. The mathematical model of motion error is established. Furthermore, to identify the error source, spatial error charts and some advanced signal processing and feature extraction technologies, such as wavelet transform and frequency analysis, are used. The analysis of experimental results shows that it is practical and efficient to use the virtual bar and the sensorless information to estimate motion error.


Procedia CIRP ◽  
2015 ◽  
Vol 27 ◽  
pp. 313-317 ◽  
Author(s):  
Zhang Zhenjiu ◽  
Ren Mingjun ◽  
Liu Mingjun ◽  
Wu xinmin ◽  
Chen yuanbo

2010 ◽  
Vol 126-128 ◽  
pp. 785-790 ◽  
Author(s):  
Shih Ming Wang ◽  
Han Jen Yu ◽  
Da Fan Chen

Measurement method using telescoping ball-bar that can directly determine the volumetric errors of three main types of five-axis machine tools was developed. Adopting Single Socket method, and the method following the defined two-step measurements sequence and incorporating with derived error models, can quickly determine the five degrees-of-freedom (DOF) volumetric errors of five-axis machine tools. Comparing to most of the current used measurement methods, the proposed method provides the advantages of low cost, high efficiency, easy setup, and high accuracy.


2020 ◽  
Vol 14 (3) ◽  
pp. 399-408
Author(s):  
Takaaki Kenno ◽  
Ryuta Sato ◽  
Keiichi Shirase ◽  
Shigemasa Natsume ◽  
Henny Spaan ◽  
...  

While evaluating the accuracy of high-precision machine tools, it is critical to reduce the error factors contributing to the measured results as much as possible. This study aims to evaluate both the error motions and geometric errors of the rotary axis without considering the influence of motion error of the linear axis. In this study, only the rotary axis is moved considering two different settings of a reference sphere, and the linear axes are not moved. The motion accuracy of the rotary axis is measured using the R-test device, both the error motions and geometric errors of the rotary axis are identified from the measurement results. Moreover, the identified geometric errors are verified for correctness via measurement with an intentional angular error. The results clarify that the proposed method can identify the error motions and geometric errors of a rotary axis correctly. The method proposed in this study can thus be effective for evaluating the motion accuracy of the rotary axis and can contribute to further improvement of the accuracy of the rotary table.


Sign in / Sign up

Export Citation Format

Share Document