Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures—a true template-free self-assembly

2007 ◽  
Vol 18 (7) ◽  
pp. 075303 ◽  
Author(s):  
Satyanarayana V N T Kuchibhatla ◽  
Ajay S Karakoti ◽  
Sudipta Seal
Author(s):  
Joshua D. Carter ◽  
Chenxiang Lin ◽  
Yan Liu ◽  
Hao Yan ◽  
Thomas H. LaBean

This article examines the DNA-based self-assembly of nanostructures. It first reviews the development of DNA self-assembly and DNA-directed assembly, focusing on the main strategies and building blocks available in the modern molecular construction toolbox, including the design, construction, and analysis of nanostructures composed entirely of synthetic DNA, as well as origami nanostructures formed from a mixture of synthetic and biological DNA. In particular, it considers the stepwise covalent synthesis of DNA nanomaterials, unmediated assembly of DNA nanomaterials, hierarchical assembly, nucleated assembly, and algorithmic assembly. It then discusses DNA-directed assembly of heteromaterials such as proteins and peptides, gold nanoparticles, and multicomponent nanostructures. It also describes the use of complementary DNA cohesion as 'smart glue' for bringing together covalently linked functional groups, biomolecules, and nanomaterials. Finally, it evaluates the potential future of DNA-based self-assembly for nanoscale manufacturing for applications in medicine, electronics, photonics, and materials science.


2020 ◽  
Vol 26 (22) ◽  
pp. 5093-5099 ◽  
Author(s):  
Wei‐Long Shan ◽  
Xiang Gao ◽  
Yue‐Jian Lin ◽  
Guo‐Xin Jin

2019 ◽  
Author(s):  
Raviv Dharan ◽  
Asaf Shemesh ◽  
Abigail Millgram ◽  
Yael Levi-Kalisman ◽  
Israel Ringel ◽  
...  

<p>Tubulin dimers are flexible entities serving as building blocks for construction of cellular polymers essential for the cytoskeleton. The conformational state of the dimer dictates the exact formation of assembly and can be regulated by cellular factors including spermine. Using solution X-ray scattering and cryo-TEM measurements we studied the behavior of tubulin assembly in the presence of millimolar spermine concentrations. The results discovered novel structural architectures of tubulin polymers and revealing fascinating hierarchical self-associations based on unique tubulin conical-spiral (TCS) subunits.</p> <p> </p> <p>We followed the assembly pathways of tubulin dimers with different spermine concentrations, from milliseconds to days, and discovered multiple phase transitions with increasing spermine concentration. At 1 mM spermine, tubulin assembled into tubulin helical-pitch (THP) structures, resembling tubulin-rings. Above 1.5 mM spermine, tubulin assembled into TCS architectures. TCS is a unique tubulin assembly, serving as a new building block subunit. TCS assembled into different architectures . The predominant structure was TCS-tube (TCST) that further assembled in a remarkable antiparallel orientation which formed bundles with 2D-cubic and unique quasi-2D hexagonal lattices. Each TCST in the quasi-2D hexagonal lattice was surrounded by four antiparallel TCSTs and two parallel TCSTs. All the above assemblies have never been observed before. At higher spermine concentrations, tubulin assembled into twisted inverted tubulin tubules (ITTs).</p> <p>Here we also show for the first time, the hierarchical assembly pathways from tubulin dimer to each of the above structures, using time-resolved experiments with millisecond temporal resolution. We discovered that the structures that formed at low spermine concentrations were transient precursors of the structures formed at higher spermine concentrations. </p> <p> </p> <p>The results are based on high quality cryo-TEM images, cutting edge synchrotron solution X-ray scattering measurements and state-of-the-art data analysis, using our home developed groundbreaking analysis software, D+. </p> <p>The findings can be relevant to a broad research fields including studies which explore different arrangements of the cytoskeletal network, or studies exploring the attraction forces between proteins that dictate their mode of assembly and molecular designed self-assembly of natural and/or synthetic analogous.</p>


2010 ◽  
Vol 498 (4-6) ◽  
pp. 317-322 ◽  
Author(s):  
Vivek Pachauri ◽  
Klaus Kern ◽  
Kannan Balasubramanian

2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


2017 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Stephen Schrettl ◽  
Nicholas B. Tito ◽  
Ye Yang ◽  
Malavika Nair ◽  
...  

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.


2021 ◽  
Author(s):  
Alexander Banger ◽  
Julian Sindram ◽  
Marius Otten ◽  
Jessica Kania ◽  
Alexander Strzelczyk ◽  
...  

We present the synthesis of so called amphiphilic glycomacromolecules (APGs) by using solid-phase polymer synthesis. Based on tailor made building blocks, monosdisperse APGs with varying compositions are synthesized, introducing carbohydrate...


2006 ◽  
pp. 4847-4849 ◽  
Author(s):  
Bulusu Jagannadh ◽  
Marepally Srinivasa Reddy ◽  
Chennamaneni Lohitha Rao ◽  
Anabathula Prabhakar ◽  
Bharatam Jagadeesh ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Sign in / Sign up

Export Citation Format

Share Document